精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系xOy中,已知椭圆C的离心率为,且点在椭圆C.椭圆C的左顶点为A.

1)求椭圆C的方程

2)椭圆的右焦点且斜率为的直线与椭圆交于PQ两点,求三角形APQ的面积;

3)过点A作直线与椭圆C交于另一点B.若直线轴于点C,且,求直线的斜率.

【答案】123

【解析】

1)根据椭圆的离心率和过点坐标,可得关于的方程,解方程即可得到椭圆的方程;

2)设直线PQ的方程为与椭圆联立得:,利用弦长公式和点到直线的距离公式,可求得三角形的面积;

3)由题意知直线的斜率存在,设的方程为:,利用可得关于的方程,解方程即可得答案;

1)由题意知:

解得:,所以,所求椭圆C的方程为.

2)设直线PQ的方程为与椭圆联立得:

其判别式

所以

又点A到直线PQ的距离为

所以三角形APQ的面积为

3)由题意知直线的斜率存在,设为过点,则的方程为:

联立方程组,消去整理得:

恒成立,令

,得

代入中,得到,得

解得:.所以直线的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:存在唯一的实数,使得直线与曲线相切;

2)若,求证:.

(注:为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种类型的题目,此类题目有六个选项ABCDEF,其中有三个正确选项,满分6分,赋分标准为每选对一个得2分,每选错一个扣3分,最低得分为0”.在某校的一次测试中出现了这种类型的题目,已知此题的正确答案是ACD,假定考生作答的答案中选项的个数不超过三个.

1)若甲同学只能判断选项AD是正确的,现在他有两种选择:一种是将AD作为答案,另一种是在BCEF这四个选项中任选一个与AD组成一个含三个选项的答案.则甲同学的最佳选择是哪一种?请说明理由;

2)若乙同学无法判断所有选项,他决定在6个选项中任选3个作为答案:

i)设乙同学此题得分为分,求的分布列;

ii)已知有20名和乙同学情况相同的同学,且这20名考生答案互不相同,他们此题的平均得分为a分,现从这20名考生中任选3名考生,计算得到这3人平均得分为b分,试求a的值及的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧棱垂直于底面的中点,平行于平行于面.

(1)求的长;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.某市2019年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:

由表中数据可得该市各类岗位的薪资水平高低情况为(

A.数据挖掘>数据开发>数据产品>数据分析

B.数据挖掘>数据产品>数据开发>数据分析

C.数据挖掘>数据开发>数据分析>数据产品

D.数据挖掘>数据产品>数据分析>数据开发

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆轴交于 两点,且

(1)求椭圆的方程;

(2)设点是椭圆上的一个动点,且直线与直线分别交于 两点.是否存在点使得以 为直径的圆经过点?若存在,求出点的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,求函数的单调递增区间;

(2)设的内角的对应边分别为,且若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,侧面ABB1A1是菱形,且CACB1

1)证明:面CBA1⊥面CB1A

2)若∠BAA160°,A1CBCBA1,求二面角CA1B1C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;

2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式其中

查看答案和解析>>

同步练习册答案