精英家教网 > 高中数学 > 题目详情
7.对于函数f(x),若存在实数m,使得f(x+m)-f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.
(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;
(2)若f(x)=sin(x+φ)是位差值为$\frac{π}{4}$的位差奇函数,求φ的值;
(3)若f(x)=x3+bx2+cx对任意属于区间$[-\frac{1}{2},+∞)$中的m都不是位差奇函数,求实数b,c满足的条件.

分析 (1)根据“位差奇函数”的定义.考查h(x)=g(x+m)-g(m)=2x+m-2m=2m(2x-1)即可,
 (2)依题意,$f(x+\frac{π}{4})-f(\frac{π}{4})=sin(x+\frac{π}{4}+φ)-sin(\frac{π}{4}+φ)$是奇函数,求出φ;
(3)记h(x)=f(x+m)-f(m)=(x+m)3+b(x+m)2+c(x+m)-m3-bm2-cm=x3+(3m+b)x2+(3m2+2bm+c)x.假设h(x)是奇函数,则3m+b=0,此时$b=-3m≤\frac{3}{2}$.故要使h(x)不是奇函数,必须且只需$b>\frac{3}{2}$.

解答 解:(1)对于f(x)=2x+1,f(x+m)-f(m)=2(x+m)+1-(2m+1)=2x,
∴对任意实数m,f(x+m)-f(m)是奇函数,
即f(x)是位差值为任意实数m的“位差奇函数”;
对于g(x)=2x,记h(x)=g(x+m)-g(m)=2x+m-2m=2m(2x-1),
由h(x)+h(-x)=2m(2x-1)+2m(2-x-1)=0,当且仅当x=0等式成立,
∴对任意实数m,g(x+m)-g(m)都不是奇函数,则g(x)不是“位差奇函数”;
(2)依题意,$f(x+\frac{π}{4})-f(\frac{π}{4})=sin(x+\frac{π}{4}+φ)-sin(\frac{π}{4}+φ)$是奇函数,
∴$\frac{π}{4}+φ=kπ⇒φ=kπ-\frac{π}{4}$(k∈Z).
(3)记h(x)=f(x+m)-f(m)=(x+m)3+b(x+m)2+c(x+m)-m3-bm2-cm
=x3+(3m+b)x2+(3m2+2bm+c)x.
依题意,h(x)对任意$m∈[-\frac{1}{2},+∞)$都不是奇函数,
若h(x)是奇函数,则3m+b=0,此时$b=-3m≤\frac{3}{2}$.
故要使h(x)不是奇函数,必须且只需$b>\frac{3}{2}$,且c∈R.

点评 本题考查了函数中的新定义,关键是要弄清新定义的本质含义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.三棱锥P-ABC的四个顶点都在球O的球面上,已知PA、PB、PC两两垂直,PA=1,PB+PC=4,当三棱锥的体积最大时,球心O到平面ABC的距离是(  )
A.$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{3}$D.$\frac{3}{2}$-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)求点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设k为常数,且$cos(\frac{π}{4}-α)=k$,则用k表示sin2α的式子为sin2α=2k2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知非空集合M满足:对任意x∈M,总有x2∉M且$\sqrt{x}∉M$,若M⊆{0,1,2,3,4,5},则满足条件M的个数是(  )
A.11B.12C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).
(1)根据茎叶图中的数据完成2×2列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留守儿童有关?
幸福感强幸福感弱总计
留守儿童6915
非留守儿童18725
总计241640
(2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
附表:
P(K2≥k00.0500.010
k03.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{m}$=(t+1,1),$\overrightarrow{n}$=(t+2,2),若$(\overrightarrow{m}+\overrightarrow{n})⊥(\overrightarrow{m}-\overrightarrow{n})$,则t=(  )
A.0B.-3C.3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知三个数1,a,9成等比数列,则圆锥曲线$\frac{x^2}{a}+\frac{y^2}{2}=1$的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{5}$C.$\sqrt{5}$或$\frac{{\sqrt{10}}}{2}$D.$\frac{{\sqrt{3}}}{3}$或$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z满足(1+i)z=i+2,则z的虚部为(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{2}i$

查看答案和解析>>

同步练习册答案