精英家教网 > 高中数学 > 题目详情

【题目】已知A,B,C为锐角△ABC的内角, =(sinA,sinBsinC), =(1,﹣2),
(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;
(2)求tanAtanBtanC的最小值.

【答案】
(1)解:依题意有sinA=2sinBsinC.

在△ABC中,A=π﹣B﹣C,

所以sinA=sin(B+C)=sinBcosC+cosBsinC,

所以2sinBsinC=sinBcosC+cosBsinC.

因为△ABC为锐角三角形,所以cosB>0,cosC>0,

所以tanB+tanC=2tanBtanC,

所以tanB,tanBtanC,tanC成等差数列


(2)解:在锐角△ABC中,

tanA=tan(π﹣B﹣C)=﹣tan(B+C)=﹣

即tanAtanBtanC=tanA+tanB+tanC,

由(1)知tanB+tanC=2tanBtanC,

于是tanAtanBtanC=tanA+2tanBtanC≥

整理得tanAtanBtanC≥8,

当且仅当tanA=4时取等号,

故tanAtanBtanC的最小值为8


【解析】(1)依题意有sinA=2sinBsinC,从而2sinBsinC=sinBcosC+cosBsinC,再由cosB>0,cosC>0,能推导出tanB,tanBtanC,tanC成等差数列.(2)推导出tanAtanBtanC=tanA+tanB+tanC,从而tanAtanBtanC≥8,由此能求出tanAtanBtanC的最小值为8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一元二次不等式﹣x2+x+2>0的解集是(
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A的收益与投资成正比,其关系如图1所示;投资股票等风险型产品B的收益与投资的算术平方根成正比,其关系如图2所示(收益与投资单位:万元).
(1)分别将A、B两种产品的收益表示为投资的函数关系式;
(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A及股票等风险型产品B两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax2﹣(2a+1)x+a+1对于a∈[﹣1,1]时恒有f(x)<0,则实数x的取值范围是(
A.(1,2)
B.(﹣∞,1)∪(2,+∞)
C.(0,1)
D.(﹣∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=2,an+1= Sn(n=1,2,3,…).
(1)证明:数列{ }是等比数列;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且Sn=n2﹣4n﹣5.
(1)求数列{an}的通项公式;
(2)设bn=|an|,数列{bn}的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设公差大于0的等差数列的前项和为.已知,且成等比数列,记数列的前项和为.

(1)求

(2)若对于任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来发展的新机遇,与此同时,相关管理部门推出了针对电商商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品好评率为,对服务好评率为,其中对商品和服务都做出好评的交易为80次.

1)是否可以在犯错误率不超过0.1%的前提下,认为商品好评与服务好评有关?

2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.

注:1.

2.

查看答案和解析>>

同步练习册答案