精英家教网 > 高中数学 > 题目详情

的最大值为                                             (    )

       A.-2                       B.               C.-4                      D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数满足,当的最大值为

(1)求时函数的解析式;

(2)是否存在实数使得不等式对于若存在,求出实数 的取值集合,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量,在函数的图象中,对称中心到对称轴的最小距离为且当的最大值为1。

   (I)求函数的解析式;

   (II)求函数的单调递增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)已知函数满足,当的最大值为

(1)求时函数的解析式;

(2)是否存在实数使得不等式对于若存在,求出实数 的取值集合,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年安徽省高三质量检测数学试卷3(理科)(解析版) 题型:解答题

若向量,在函数的图象中,对称中心到对称轴的最小距离为,且当的最大值为1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年辽宁省高三上学期第三次月考理科数学试卷 题型:解答题

若向量,在函数的图象中,对称中心到对称轴的最小距离为且当的最大值为1。

   (I)求函数的解析式;

   (II)求函数的单调递增区间

 

查看答案和解析>>

同步练习册答案