分析 (1)设x>0,则-x<0,由条件利用函数的奇偶性求得f(x)的解析式.
(2)(2)由函数f(x)为奇函数,可得f(0)=0,再结合(1),求得当x∈R时,f(x)的解析式.
解答 解:(1)设x>0,则-x<0,又当x<0时,f(x)=2x(x+1),
故有f(-x)=2(-x)(-x+1)=2x(x-1)=-f(x),
∴f(x)=2x(1-x).
(2)由函数f(x)为奇函数,可得f(0)=0,故f(x)=$\left\{\begin{array}{l}{2x(1-x),x>0}\\{2x(x+1),x<0}\\{0,x=0}\end{array}\right.$.
点评 本题主要考查利用函数的奇偶性求函数的解析式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | t≤-3 | B. | t<-3 | C. | t≥-3 | D. | t>-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 3$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com