精英家教网 > 高中数学 > 题目详情
7.已知x、y满足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,则z=x+2y的最大值为6.

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z经过点B时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即B(2,2),
代入目标函数z=x+2y得z=2×2+2=6
故答案为:6.

点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.两台车床加工同一种机械零件如表:
 合格品次品总计
甲机床加工的零件数35540
乙机床加工的零件数501060
总计8515100
从这100个零件中任取一个零件,取得的零件是甲机床加工的合格品的概率是$\frac{7}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.高三年级某6个班联合到集市购买了6根竹竿,作为班旗的旗杆之用,它们的长度分别为3.8,4.3,3.6,4.5,4.0,4.1(单位:米).
(1)若从中随机抽取两根竹竿,求长度之差不超过0.5米的概率;
(2)若长度不小于4米的竹竿价格为每根10元,长度小于4米的竹竿价格为每根a元.从这6根竹竿中随机抽取两根,若这两根竹竿总价的期望为18元,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)当a=3时,求h(x)的单调区间;
(2)设h(x)有两个极值点x1,x2,且x1∈(0,$\frac{1}{2}$),若h(x1)-h(x2)>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+…+f(2015)=(  )
A.333B.336C.1678D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知虚数z满足|2z+5|=|z+10|.
(1)求|z|;
(2)是否存在实数m,是$\frac{z}{m}$+$\frac{m}{z}$为实数,若存在,求出m值;若不存在,说明理由;
(3)若(1-2i)z在复平面内对应的点在第一、三象限的角平分线上,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某少数民族的刺绣有着悠久的历史,图中(1)、(2)、(3)、(4)为她们刺锈最简单的四个图案,这些图案都是由小正方向构成,小正方形数越多刺锈越漂亮,向按同样的规律刺锈(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形

(1)求f(6)的值
(2)求出f(n)的表达式
(3)求证:1≤$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“直线l垂直于平面α内两直线a,b”是“直线l⊥平面α”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某班的全体学生(共50人)参加数学测试(百分制),成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100],依此表可以估计这次测试成绩的中位数为70分.
(1)求表中a,b的值;
(2)请估计该班本次数学测试的平均分.

查看答案和解析>>

同步练习册答案