【题目】在平面直角坐标系中,O为原点,两个点列 和 满足:① ;②
(1)求点和的坐标;
(2)求向量的坐标;
(3)对于正整数k,用表示无穷数列 中从第k+1项开始的各项之和,用表示无穷数列 中从第k项开始的各项之和,即, 若存在正整数k和p,使得,求k,p的值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:
(1)PA∥平面MDB;
(2)PD⊥BC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】8个女孩和25个男孩围成一圈,任何两个女孩之间至少站两个男孩,则共有__________________种不同的排列方法.(只要把圈旋转一下就重合的排法认为是相同的).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是______.
①若直线与直线互相垂直,则
②若,两点到直线的距离分别是,,则满足条件的直线共有3条
③过,两点的所有直线方程可表示为
④经过点且在轴和轴上截距都相等的直线方程为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是______.
①若直线与直线互相垂直,则
②若,两点到直线的距离分别是,,则满足条件的直线共有3条
③过,两点的所有直线方程可表示为
④经过点且在轴和轴上截距都相等的直线方程为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点、,动点满足,记的轨迹为曲线,直线()交曲线于、两点,点在第一象限,轴,垂足为,连结并延长交曲线于点.
(1)求曲线的方程,并说明曲线是什么曲线;
(2)若,求△的面积;
(3)证明:△为直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,真命题的个数是( )
①底面是矩形的平行六面体是长方体;
②棱长都相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④相邻两个面垂直于底面的棱柱是直棱柱;
⑤各侧面是全等的等腰三角形的棱锥一定是正棱锥;
⑥三棱锥的顶点在底面上的射影是底面三角形的垂心,则这个棱锥的三条侧棱长相等.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】技术员小张对甲、乙两项工作投入时间(小时)与做这两项工作所得报酬(百元)的关系式为:,若这两项工作投入的总时间为120小时,且每项工作至少投入20小时.
(1)试建立小张所得总报酬(单位:百元)与对乙项工作投入的时间(单位:小时)的函数关系式,并指明函数定义域;
(2)小张如何计划使用时间,才能使所得报酬最高?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com