精英家教网 > 高中数学 > 题目详情
10.已知a=8.10.51,b=8.10.5,c=log30.3,则(  )
A.b<a<cB.a<b<cC.b<c<aD.c<b<a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵a=8.10.51>b=8.10.5>1,c=log30.3<0,
∴a>b>c.
故选:D.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面为矩形,PA是四棱锥的高,AP=AB=2,F是PB的中点,E是BC上的动点.
(1)证明:PE⊥AF;
(2)若BC=2BE=4$\sqrt{3}$,求直线AP与平面PDE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-3ax(a∈R).
(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程; 
(Ⅱ)若函数f(x)在区间(-1,2)上仅有一个极值点,求实数a的取值范围;
(Ⅲ)若a>1,且方程f(x)=a-x在区间[-a,0]上有两个不相等的实数根,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知p1:直线l1:x-y-1=0与直线l2:x+ay-2=0平行,q:a=-1,则p是q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\sqrt{x+1}$+lg(1-x)的定义域为(  )
A.[-1,1]B.[-1,+∞)C.[-1,1)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求满足下列条件的直线方程:
(1)已知A(2,2)和直线l:3x+4y-20=0,求过A和直线l垂直的直线方程;
(2)求过定点P(2,3)且在两坐标轴上的截距相等的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列双曲线中,焦点在x轴上且渐近线方程为y=±$\frac{1}{4}$x的是(  )
A.x2-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-y2=1C.$\frac{{y}^{2}}{16}$-x2=1D.y2-$\frac{{x}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,既是偶函数,又在区间[0,1]上单调递增的是(  )
A.y=cosxB.y=-x2C.$y={(\frac{1}{2})^{|x|}}$D.y=|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知曲线$f(x)=lnx+\frac{x^2}{a}$在点(1,f(1))处的切线的倾斜角为$\frac{3π}{4}$,则a的值为(  )
A.1B.-4C.$-\frac{1}{2}$D.-1

查看答案和解析>>

同步练习册答案