精英家教网 > 高中数学 > 题目详情
11.设各项均为正的等比数列{an}满足a4a8=3a7,则log3(a1a2…a9)等于(  )
A.38B.39C.9D.7

分析 利用等比数列的通项公式推导出a5=3,由此利用等比数列性质和对数函数运算法则能求出log3(a1a2…a9)的值.

解答 解:∵a4•a8=a5•a7,a5•a7=3a7
∴a5=3,
∴${log_3}({a_1}{a_2}…{a_9})={log_3}a_5^9={log_3}{3^9}=9$.
故选:C.

点评 本题考查对数式值的求法,是基础题,解题时要认真审题,注意等比数列性质和对数函数运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列关于零向量的说法不正确的是(  )
A.零向量是没有方向的向量B.零向量的方向是任意的
C.零向量与任一向量共线D.零向量只能与零向量相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=e2-x+a,x∈R的图象在点x=0处的切线为y=bx.
(Ⅰ)求函数f(x)的解析式.
(Ⅱ)当x∈R时,求证:f(x)≥-x2+x;
(Ⅲ)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:${ρ^2}=\frac{12}{{2+{{cos}^2}θ}}$,直线l:$2ρcos(θ-\frac{π}{6})=\sqrt{3}$.
(1)写出直线l的参数方程;
(2)设直线l与曲线C的两个交点分别为A、B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足不等式组$\left\{\begin{array}{l}x≥-1\\ x-y≥1\\ x-2y+1≤0\end{array}\right.$,则x+y的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0),点(4,-2)在它的一条渐近线上,则离心率等于(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某中学高三年级有400名学生参加月考,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.
(1)求第四个小矩形的高;
(2)估计本校在这次统测中数学成绩不低于120分的人数;
(3)已知样本中,成绩在[140,150]内的有两名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求恰好男生女生各有一名的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足$f(\frac{π}{6})=f(\frac{5π}{6})=0$,给出以下四个结论:
①ω=3; ②ω≠6k,k∈N*;③φ可能等于$\frac{3}{4}π$; ④符合条件的ω有无数个,且均为整数.
其中所有正确的结论序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xex+ex(e为自然对数的底)
(1)求曲线y=f(x)在点(1,f(1))处的切线方程
(2)求y=f(x)的极小值点.

查看答案和解析>>

同步练习册答案