【题目】若函数f(x)和g(x)满足:①在区间[a,b]上均有定义;②函数y=f(x)-g(x)在区间[a,b]上至少有一个零点,则称f(x)和g(x)在[a,b]上具有关系G.
(1)若f(x)=lgx,g(x)=3-x,试判断f(x)和g(x)在[1,4]上是否具有关系G,并说明理由;
(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有关系G,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】迭代法是用于求方程或方程组近似根的一种常用的算法设计方法.设方程为,用某种数学方法到处等价的形式,然后按以下步骤执行:
(1)选一个方程的近似根,赋给变量;
(2)将的值保存于变量,然后计算,并将结果存于变量;
(3)当与的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算.若方程有根,则按上述方法求得的就认为是方程的根.试用迭代法求某个数的平方根,用流程图和伪代码表示问题的算法.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了扩大该商品的影响力,提高年销售量,公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元,公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,轴为正半轴建立极坐标系,圆的极坐标方程为,直线的参数方程为(t为参数).
(1)求圆的直角坐标方程;
(2)求直线分圆所得的两弧程度之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的一个焦点与抛物线的焦点重合,点在 上
(Ⅰ)求 的方程;
(Ⅱ)直线不过原点O且不平行于坐标轴,与有两个交点,线段的中点为,证明:的斜率与直线的斜率的乘积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com