精英家教网 > 高中数学 > 题目详情
6.甲乙两名篮球运动员在4场比赛中的得分情况如图所示.v1,v2分别表示甲、乙二人的平均得分,s1,s2分别表示甲、乙二人得分的方差,那么v1和v2,s1和s2的大小关系是(  )
A.v1>v2,s1>s2B.v1<v2,s1>s2C.v1>v2,s1<s2D.v1<v2,s1<s2

分析 由茎叶图先求出平均数,再计算方差.

解答 解:由茎叶图性质得:
V1=$\frac{1}{4}(9+13+14+20)$=14,
V2=$\frac{1}{4}(8+9+13+22)$=13,
S1=$\frac{1}{4}$[(9-14)2+(13-14)2+(14-14)2+(20-14)2]=$\frac{31}{2}$,
S2=$\frac{1}{4}$[(8-13)2+(9-13)2+(13-13)2+(22-13)2]=$\frac{61}{2}$.
∴V1>V2,S1<S2
故选:C.

点评 本题考查两组数据的平均数和方差的大小的比较,是基础题,解题时要认真审题,注意茎叶图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>a>0)的右焦点为F,O为坐标原点,若存在直线l过点F交双曲线C的右支于A,B两点,使$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则双曲线离心率的取值范围是$\sqrt{3}$>e≥$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等差数列{an}中,a2=4,前4项之和为18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=n•{2^{{a_n}-2}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,a=2,c=1,∠B=60°,那么b等于(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.1D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=sin(ωx+\frac{π}{4})$,其中ω>0,x∈R.
(1)f(0)=$\frac{\sqrt{2}}{2}$;
(2)如果函数f(x)的最小正周期为π,当$x∈[0,\frac{π}{2}]$时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在棱长为1的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),对确定的常数m,若满足|PB|+|PD1|=m的点P的个数为n,则n的最大值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若实数x,y满足$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\end{array}\right.$,则2x+y的最大值是14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(b>a>0)$的左焦点F1(-c,0)(c>0)作圆x2+y2=$\frac{{a}^{2}}{4}$的切线,切点为E,延长F1E交双曲线右支于点P.若E是F1P中点,则双曲线的离心率为(  )
A.$\frac{5}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

同步练习册答案