精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值点,证明:.

【答案】(1) 当时, 上单调递增;

上单调递减;时, 上单调递增;当时,上单调递减; 在上单调递增.

(2)见解析.

【解析】分析:(1),分别讨论当时,讨论导函数的正负从而可得函数的单调性;

(2)由(1)知,且为方程的两个根,由根与系数的关系,其中,可化简,令,进而求导求最值即可证得.

详解:(1) .

,对称轴为.

①当时,,所以上单调递增.

②当时, .此时,方程两根分别为.

时,,当时,,当,所以上单调递增, 在上单调递减.

时,,当时,,当, 所以上单调递减, 在上单调递增.

综上,当时, 上单调递增;

上单调递减;时, 上单调递增;当时,上单调递减; 在上单调递增.

(2)由(1)知,且为方程的两个根.

由根与系数的关系,其中.

于是

.

所以在上单调递减,且.

,即

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示

(1)求函数的解析式;

(2)设,且方程有两个不同的实数根,求实数的取值范围和这两个根的和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(Ⅰ)若,求的极值;

(Ⅱ)若函数的两个零点为,记,证明:

【答案】(Ⅰ)极大值为无极小值;证明见解析.

【解析】分析:(Ⅰ)先判断函数上的单调性,然后可得当时,有极大值,无极小值.不妨设由题意可得,又由条件得,构造,令,则,利用导数可得故得所以

详解:(Ⅰ)

且当时,,即上单调递增,

时,,即上单调递减,

∴当时,有极大值,且无极小值.

(Ⅱ)函数的两个零点为,不妨设

,则

上单调递减,

点睛:(1)研究方程根的情况可以通过导数研究函数的单调性、最大(小)值、函数的变化趋势等根据题目要求画出函数图象的大体图象然后通过数形结合的思想去分析问题可以使得问题的求解有一个清晰、直观的整体展现

(2)证明不等式时常采取构造函数的方法,然后通过判断函数的单调性借助函数的最值进行证明

型】解答
束】
22

【题目】在平面直角坐标系中,直线的参数方程为为参数,.以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为:

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

Ⅱ)设直线与曲线交于不同的两点的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,(其中 为自然对数的底数, …….

1)令,若对任意的恒成立,求实数的值;

2)在(1)的条件下,设为整数,且对于任意正整数 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:

表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:

如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面为直角,分别为的中点.

(1)试证:平面

(2)求与平面所成角的大小;

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在学年期末举行“我最喜欢的文化课”评选活动,投票规则是一人一票,高一(1)班44名学生和高一(7)班45名学生的投票结果如下表(无废票):

语文

数学

外语

物理

化学

生物

政治

历史

地理

高一(1)班

6

9

7

5

4

5

3

3

2

高一(7)班

6

4

5

6

5

2

3

该校把上表的数据作为样本,把两个班同一学科的得票之和定义为该年级该学科的“好感指数”.

(Ⅰ)如果数学学科的“好感指数”比高一年级其他文化课都高,求的所有取值;

(Ⅱ)从高一(1)班投票给政治、历史、地理的学生中任意选取位同学,设随机变量为投票给地理学科的人数,求的分布列和期望;

(Ⅲ)当为何值时,高一年级的语文、数学、外语三科的“好感指数”的方差最小?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各人进行模拟选科.经统计,选择全文的人数比不选全文的人数少人.

(1)估计在男生中,选择全文的概率.

(2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;

附:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的所有棱长均为2, 分别为的中点.

(1)证明: 平面

(2)求点到平面的距离.

查看答案和解析>>

同步练习册答案