精英家教网 > 高中数学 > 题目详情
已知f(2x+1)定义域为[2,3],则y=f(x+1)的定义域是
[4,6]
[4,6]
分析:由f(2x+1)定义域为[2,3],得5≤2x+1≤7,故在y=f(x+1)中,5≤x+1≤7,由此能求出y=f(x+1)的定义域.
解答:解:∵f(2x+1)定义域为[2,3],
∴2≤x≤3,
∴5≤2x+1≤7,
∴在y=f(x+1)中,
5≤x+1≤7,
∴4≤x≤6,
∴y=f(x+1)的定义域是[4,6].
故答案为:[4,6].
点评:本题考查抽象函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为
2
-1

(I)求椭圆方程;
(II)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(-
5
4
,0
),证明:
MA
MB
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线
l
 
1
:y=2x+m(m<0)
与抛物线C1:y=ax2(a>0)和圆C2x2+(y+1)2=5都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线
l
 
1
:y=2x+m(m<0)
与抛物线C1:y=ax2(a>0)和圆C2x2+(y+1)2=5都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线,直线交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为
2
-1

(I)求椭圆方程;
(II)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(-
5
4
,0
),证明:
MA
MB
为定值.

查看答案和解析>>

同步练习册答案