【题目】在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上贏得一片赞誉.我国某口罩生产厂商在加大生产的同时.狠抓质量管理,不定时抽查口罩质量,该厂质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:,,,,,得到如下频率分布直方图.
(1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口罩,质量指标值不低于130的为一级口罩.现从样本口罩中利用分层抽样的方法随机抽取8个口罩,再从中抽取3个,记其中一级口罩个数为,求的分布列及数学期望;
(2)在2020年“五一”劳动节前,甲,乙两人计划同时在该型号口罩的某网络购物平台上分别参加、两店各一个订单“秒杀”抢购,其中每个订单由个该型号口罩构成.假定甲、乙两人在、两店订单“秒杀”成功的概率分别为,,记甲、乙两人抢购成功的订单总数量、口罩总数量分别为,,
①求的分布列及数学期望;
②求当的数学期望取最大值时正整数的值.
【答案】(1)见解析,(2)①见解析;②6
【解析】
(1)根据分层抽样可得二级、一级口罩个数,然后写出的所有可得取值并计算相应的概率,列出分布列并根据数学期望公式可得结果.
(2)①写出写出的所有可得取值并计算相应的概率,列出分布列并根据数学期望公式可得结果.②根据,使用换元法并构造函数,然后利用导数判断函数单调性,进一步可得取最大值的条件.
(1)按分层抽样抽取8个口罩,则其中二级、一级口罩个数分别为6,2.故的可能取值为0,1,2.
,
,
,
的分布列为
0 | 1 | 2 | |
所以.
(2)①由题知的可能取值为0,1,2,
;
;
.
所以的分布列为
0 | 1 | 2 | |
所以
.
②因为,
所以,
令,
设,
则,
因为,
所以当时,,
所以在区间上单调递增;
当时,,
所以在区间上单调递减;
所以当即时取最大值,
所以.
所以取最大值时,的值为6.
科目:高中数学 来源: 题型:
【题目】某校为了解该校学生“停课不停学”的网络学习效率,随机抽查了高一年级100位学生的某次数学成绩,得到如图所示的频率分布直方图:
(1)估计这100位学生的数学成绩的平均值.(同一组中的数据用该组区间的中点值代表);
(2)根据整个年级的数学成绩,可以认为学生的数学成绩近似地服从正态分布经计算,(1)问中样本标准差的近似值为10.用样本平均数作为的近似值,用样本标准差作为的估计值,现任抽取一位学生,求他的数学成绩恰在64分到94分之间的概率.
参考数据:若随机变量,则,,
(3)该年级1班的数学老师为了能每天督促学生的网络学习,提高学生每天的作业质量及学习数学的积极性,特意在微信上设计了一个每日作业小程序,每当学生提交的作业获得优秀时,就有机会参与一次小程序中“玩游戏,得奖励积分”的活动,开学后可根据获得积分的多少领取老师相应的小奖品.小程序页面上有一列方格,共15格,刚开始有只小兔子在第1格,每点一下游戏的开始按钮,小兔子就沿着方格跳一下,每次跳1格或跳2格,概率均为,依次点击游戏的开始按钮,直到小兔子跳到第14格(奖励0分)或第15格(奖励5分)时,游戏结束,每天的积分自动累加,设小兔子跳到第格的概率为,试证明是等比数列,并求的值.(获胜的概率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正四棱锥P﹣ABCD的底面边长为2,侧棱长为2,过点A作一个与侧棱PC垂直的平面α,则平面α被此正四棱锥所截的截面面积为_____,平面α将此正四棱锥分成的两部分体积的比值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①,②(),③()这三个条件中任选一个,补充在下面的问题中,若问题中的k存在,求出k的值;若k不存在,说明理由.已知数列为等比数列,,,数列的首项,其前n项和为,______,是否存在,使得对任意,恒成立?
注:如果选择多个条件分别解答,按第一个解答计分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产企业在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:,,,…,,得到如下频率分布直方图.
(1)求出直方图中的值;
(2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数(同一组中的数据用该组区间中点值作代表,中位数精确到0.01);
(3)现规定:质量指标值小于70的口罩为二等品,质量指标值不小于70的口罩为一等品.利用分层抽样的方法从该企业所抽取的100个口罩中抽出5个口罩,并从中再随机抽取2个作进一步的质量分析,试求这2个口罩中恰好有1个口罩为一等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线C的顶点是原点O,以x轴为对称轴,且经过点P(1,2).
(1)求抛物线C的方程;
设点A,B在抛物线C上,直线PA,PB分别与y轴交于点M,N,|PM|=|PN|.求直线AB的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为.
(1)求曲线的直角坐标方程与直线l的参数方程;
(2)设直线与曲线交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在处的切线斜率为2,试求a的值及此时的切线方程;
(2)若函数在区间(其中…为自然对数的底数)上有唯一的零点,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com