精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义在上的偶函数,当时, .

1)直接写出函数的增区间(不需要证明);

(2)求出函数 的解析式;

3)若函数 求函数的最小值.

【答案】(1)增区间为;(2);(3).

【解析】试题分析:(1)根据奇偶性,结合函数简图可得函数的增区间;(2)因为 所以根据函数是定义在上的偶函数, , 且当, , 时函数的解析式综合可得函数的解析式;(3)根据(1)可得函数的解析式结合二次函数的图象和性质进行分类讨论,进而可得函数的最小值的表达式.

试题解析:(1)的增区间为 .

(2)设

由已知故函数的解析式为.

(3)由(2)可得:,对称轴为:

此时函数在区间上单调递增的最小值为

,此时函数在对称轴处取得最小值的最小值为

此时函数在区间上单调递减的最小值为.

综上:所求最小值为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2016年入冬以来,各地雾霾天气频发, 频频爆表(是指直径小于或等于2.5微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与的浓度是否相关,某市现采集周一到周五某一时间段车流量与的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

50

51

54

57

58

的浓度(微克/立方米)

69

70

74

78

79

(1)请根据上述数据,在下面给出的坐标系中画出散点图;

(2)试判断是否具有线性关系,若有请求出关于的线性回归方程,若没有,请说明理由;

(3)若周六同一时间段的车流量为60万辆,试根据(2)得出的结论,预报该时间段的的浓度(保留整数).

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了该农产品.以)表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将表示为的函数;

(Ⅱ)根据直方图估计利润不少于57000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数).

(1)若函数在定义域上是单调函数,求实数的取值范围;

(2)求函数的极值点;

(3)令 ,设 是曲线上相异三点,其中.求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将7名应届师范大学毕业生分配到3所中学任教.

(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?

(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的三个极值点,且,有下列四个关于函数的结论:①;②;③;④恒成立,其中正确的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为 为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若点 在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药(单位:微克)的统计表:

(1)令,利用给出的参考数据求出关于的回归方程.(精确到0.1)

参考数据:

其中

(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需用用多少千克的清水清洗1千克蔬菜?(精确到0.1,参考数据

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

同步练习册答案