精英家教网 > 高中数学 > 题目详情
5.已知 f(x)、g(x)都是定义在 R 上的函数,g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=ax g(x),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,则关于x的方程abx2+$\sqrt{2}$x+2=0(b∈(0,1))有两个不同实根的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 f(x)=ax•g(x),g(x)≠0,构造h(x)=ax=$\frac{f(x)}{g(x)}$,又f′(x)•g(x)<f(x)•g′(x),利用导数可得:函数h(x)单调递减,0<a<1.利用$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,解得a,再求概率.

解答 解:∵f(x)=ax•g(x),g(x)≠0,
∴h(x)=ax=$\frac{f(x)}{g(x)}$,又f′(x)•g(x)<f(x)•g′(x),
∴h′(x)=$\frac{f′(x)g(x)-f(x)g′(x)}{{g}^{2}(x)}$<0,∴函数h(x)单调递减,∴0<a<1.
$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,∴a+a-1=$\frac{5}{2}$,解得a=$\frac{1}{2}$.
关于x的方程abx2+$\sqrt{2}$x+2=0,即$\frac{1}{2}$bx2+$\sqrt{2}$x+2=0,$△=2-4•\frac{1}{2}b•2≥0$,∴$b≤\frac{1}{2}$,
∴关于x的方程abx2+$\sqrt{2}$x+2=0(b∈(0,1))有两个不同实根的概率为$\frac{\frac{1}{2}}{1}$=$\frac{1}{2}$,
故选B.

点评 此题考查学生会利用有理数指数幂公式化简求值,应用导数判断函数的单调性,考查概率的计算,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列函数中既是奇函数又在定义域上为增函数的是(  )
A.f(x)=3x+1B.f(x)=$\frac{1}{x}$C.f(x)=1-$\frac{1}{x}$D.f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?x∈R,x≤1或x2>4”的否定为“?x∈R,x>1且x2≤4”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b2+c2=a2+bc.
(1)求角A的大小;
(2)若a=$\sqrt{7}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2+3x<4},N={-2,-1,0,1,2},则M∩N=(  )
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-2,-1,0}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点,点N在线段AD上.
(I)点N为线段AD的中点时,求证:直线PA∥BMN;
(II)若直线MN与平面PBC所成角的正弦值为$\frac{4}{5}$,求平面PBC与平面BMN所成角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC的内角A,B,C的对边分别为a,b,c.若c=$\sqrt{2}$,b=$\sqrt{6}$,B=120°,则a等于(  )
A.$\sqrt{6}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若曲线f(x)=ax+$\frac{1}{2}$x+lnx在点(1,f(1))处的切线与y=$\frac{7}{2}$x-1平行,则a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3•a4=117,a2+a5=22.
(1)求数列{an}的通项公式;
(2)求数列{an+1}的前n项和.

查看答案和解析>>

同步练习册答案