精英家教网 > 高中数学 > 题目详情

如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.

(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABDA1B1D1的体积.

(1)见解析   (2)1

解析(1)证明:由题设知,BB1DD1,
∴BB1D1D是平行四边形,
∴BD∥B1D1.
又BD平面CD1B1,
∴BD∥平面CD1B1.
∵A1D1B1C1BC,
∴A1BCD1是平行四边形,
∴A1B∥D1C.
又A1B平面CD1B1,
∴A1B∥平面CD1B1.
又∵BD∩A1B=B,
∴平面A1BD∥平面CD1B1.
(2)解:∵A1O⊥平面ABCD,
∴A1O是三棱柱ABDA1B1D1的高.
又∵AO=AC=1,AA1=,
∴A1O==1.
又∵S△ABD=××=1,
=S△ABD×A1O=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为矩形,.
(1)求证,并指出异面直线PA与CD所成角的大小;
(2)在棱上是否存在一点,使得?如果存在,求出此时三棱锥与四棱锥的体积比;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,..

(1)求证:平面PAB丄平面PCD
(2)如果AB=BC=2,PB=PC=求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知多面体中, 四边形为矩形,,平面平面分别为的中点,且.

(1)求证:平面
(2)求证:平面
(3)设平面将几何体分成的两个锥体的体积分别为,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥PABCD中,平面PAD⊥平面ABCDABDC,△PAD是等边三角形,已知AD=4,BD=4AB=2CD=8.

(1)设MPC上的一点,证明:平面MBD⊥平面PAD
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
(3)求四棱锥PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在体积为的圆锥中,已知的直径,的中点,是弦的中点.

(1)指出二面角的平面角,并求出它的大小;
(2)求异面直线所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面,底面是平行四边形, 是 的中点。

(1)求证:
(2)求证:
(3)若,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,圆锥的轴截面为等腰直角为底面圆周上一点.

(1)若的中点为,
求证:平面
(2)如果,,求此圆锥的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm,求圆台的母线长.

查看答案和解析>>

同步练习册答案