精英家教网 > 高中数学 > 题目详情
4.设点P(x,y)满足条件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$,点Q(a,b)满足ax+by≤1恒成立,其中O是原点,a≤0,b≥0,则Q点的轨迹所围成的图形的面积为(  )
A.$\frac{1}{2}$B.1C.2D.4

分析 由已知中在平面直角坐标系中,点P(x,y)满足条件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$,则满足ax+by≤1恒成立得到ax+by的最大值为2,所以Q的坐标满足$\left\{\begin{array}{l}{a≤0}\\{2b≤1}\\{a≤0,b≥0}\end{array}\right.$,画出满足条件的图形,即可得到点Q的轨迹围成的图形的面积.

解答 解:由ax+by≤1,
∵作出点P(x,y)满足条件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$的区域,如图,
ax+by≤1恒成立,因为a≤0,b≥0,所以只须点P(x,y)在可行域内的角点处:B(0,2),ax+by≤1成立即可,
∴点Q的坐标满足$\left\{\begin{array}{l}{a≤0}\\{2b≤1}\\{a≤0,b≥0}\end{array}\right.$,
它表示一个长为1宽为$\frac{1}{2}$的矩形,其面积为:$\frac{1}{2}$;
故选:A.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知方程x2+ax+2b=0(a∈R,b∈R),其一根在区间(0,1)内,另一根在区间(1,2)内,则$\frac{b-3}{a-1}$的取值范围为$(\frac{1}{2},\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a>b,则下面结论正确的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.$\frac{a}{b}>1$C.|a|>bD.ac2>bc2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是定义在实数集R上的可导函数,且其导函数为f′(x),若f′(x)<f(x)在R上恒成立,则不等式ef(x)>f(1)ex上的解集为(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sin(π+α)+sin(-α)=-m,则sin(3π+α)+2sin(2π-α)等于(  )
A.-$\frac{2}{3}$mB.-$\frac{3}{2}$mC.$\frac{2}{3}$mD.$\frac{3}{2}$m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$f(x+\frac{1}{x})={x^2}+\frac{1}{x^2}$,则函数f(x)=(  )
A.x2-2(x≠0)B.x2-2(x≥2)C.x2-2(|x|≥2)D.x2-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax+8的单调递减区间为(-5,5),求函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知{an}是递增的等差数列,a1=2,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=2an+an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lg(x+$\frac{a}{x}$)(a∈R).
(1)求f(x)的定义域;
(2)若a<0,集合A={y|y=f(x),$\frac{1}{2}$≤x≤2},B=[-1,1],且A⊆B,求a的取值范围.

查看答案和解析>>

同步练习册答案