【题目】已知函数,.
(1)若,求函数的图象在处的切线方程;
(2)若,试讨论方程的实数解的个数;
(3)当时,若对于任意的,都存在,使得,求满足条件的正整数的取值的集合.
【答案】(1);(2)详见解析;(3).
【解析】
试题分析:(1)去绝对值号后求导,利用导数的几何意义即可求解;(2)对的取值进行分类讨论,去绝对值号后即可求解;(3)分析题意可知问题等价于函数的值域是的子集,从而即可建立关于的不等式,即可求解.
试题解析:(1)当,时,,从而,而,,∴函数,的图象在处的切线方程为:,即;(2)即为,∴,从而,此方程等价于或或,
∴当时,方程有两个不同的解,;
当时,方程有三个不同的解,,;
当时,方程)有两个不同的解,;
(3)当,时,,,
∴函数在是增函数,且,
∴当时,,,
当时,,
∵对任意的,都存在,使得,
∴,从而,
∴,即,即,
∵,显然满足,而时,均不满足,
∴满足条件的正整数的取值的集合为.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=a,
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD;
(3)求二面角P-AC-D的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点.
(Ⅰ)求的方程;
(Ⅱ)设过点的直线与相交于两点,当的面积最大时,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(1)求数列{bn}的通项公式;
(2)令cn=,Tn是数列{cn}的前n项和,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形中, , , ,四边形为矩形,平面平面, .
(1)求证: 平面;
(2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知过点的直线的参数方程是(为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
组 别 | 频数 | 频率 |
145.5~149.5 | 1 | 0.02 |
149.5~153.5 | 4 | 0.08 |
153.5~157.5 | 20 | 0.40 |
157.5~161.5 | 15 | 0.30 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | m | n |
合 计 | M | N |
(1)求出表中所表示的数分别是多少?
(2)画出频率分布直方图.
(3)全体女生中身高在哪组范围内的人数最多?由直方图确定此组数据中位数是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com