精英家教网 > 高中数学 > 题目详情

【题目】微信运动,是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注微信运动公众号查看自己每天或每月行走的步数,同时也可以和其他用户进行运动量的或点赞.加入微信运动后,为了让自己的步数能领先于朋友,人们运动的积极性明显增强,下面是某人20181月至201811月期间每月跑步的平均里程(单位:十公里)的数据,绘制了下面的折线图.

根据折线图,下列结论正确的是(

A. 月跑步平均里程的中位数为月份对应的里程数

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在

D. 月至月的月跑步平均里程相对于月至月,波动性更小,变化比较平稳

【答案】D

【解析】

根据折线图估计中位数、确定增减性、估计最大值,研究稳定性,即可确定选项.

根据折线图得中位数为月份对应的里程数;月跑步平均里程在1月、月、7月10月减少,月跑步平均里程高峰期大致在月;月至月的月跑步平均里程相对于月至月,波动性更小,变化比较平稳,所以选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆过两点 且圆心在直线

(Ⅰ)求圆的标准方程;

(Ⅱ)直线过点且与圆有两个不同的交点 ,若直线的斜率大于0,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线.

(Ⅰ)设图象上一点,为原点,直线的斜率,若 上存在极值,求的取值范围;

(Ⅱ)是否存在实数,使得直线是曲线的切线?若存在,求出的值;若不存在,说明理由;

(Ⅲ)试确定曲线与直线的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}{bn}满足:a13,当n≥2时,an1+an4n;对于任意的正整数n.设{bn}的前n项和为Sn

1)求数列{an}{bn}的通项公式;

2)求满足13Sn14n的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDABCD,平面垂直于对角线AC,且平面截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则(

A. S为定值,l不为定值 B. S不为定值,l为定值

C. Sl均为定值 D. Sl均不为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是边长为1的正方形,PBBCPDDC,且PC

1)求证:PA⊥平面ABCD

2)求异面直线ACPD所成角的余弦值;

3)求二面角BPDC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B,C,D是直角坐标系中不同的四点,若,且,则下列说法正确的是( ),

A.C可能是线段AB的中点

B.D可能是线段AB的中点

C.CD可能同时在线段AB

D.CD不可能同时在线段AB的延长线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数上存在满足,则称函数是在上的“双中值函数”,已知函数上的“双中值函数”,则函数的取值范围是__________

查看答案和解析>>

同步练习册答案