【题目】在某次测验中,有6位同学的平均成绩为75分, 用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n | 1 | 2 | 3 | 4 | 5 |
成绩xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
【答案】(1)90,7 (2)0.4
【解析】
试题分析:(1)根据平均数公式写出这组数据的平均数表示式,在表示式中有一个未知量,根据解方程的思想得到结果,求出这组数据的方差,再进一步做出标准差.(2)本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有种结果,根据概率公式得到结果
试题解析:(1)∵这6位同学的平均成绩为75分,
∴(70+76+72+70+72+x6)=75,解得x6=90.
这6位同学成绩的方差
s2=×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49, ∴标准差s=7.
(2)从前5位同学中,随机地选出2位同学的成绩有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70, 72),共10种,
恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种.所求的概率为=0.4.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面是正三角形,且与底面垂直,底面是边长为2的菱形, 是的中点,过三点的平面交于, 为的中点,求证:
(1)平面;
(2)平面;
(3)平面平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是公差为正数的等差数列,其前项和为,且,.
(1)求数列的通项公式;
(2)数列满足,.
①求数列的通项公式;
②是否存在正整数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.
(1)求频率分布直方图中的值;
(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;
(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列中,,且对任意的成等比数列,其公比为.
(1)若,求;
(2)若对任意的成等差数列,其公差为.设.
①求证:成等差数列并指出其公差;
②若,试求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=,设bn=,n∈N*。
(1)证明{bn}是等比数列(指出首项和公比);
(2)求数列{log2bn}的前n项和Tn。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以分组的频率分布直方图如图所示.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com