精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
分析:(1)先以O为原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系.设出点的坐标,求出直线直线BE与AC的方向向量,最后利用向量的夹角公式计算即得异面直线BE与AC所成的角的余弦值;
(2)先分别求得平面ABE的法向量和平面BEC的一个法向量,再利用夹角公式求二面角的余弦值即可.
解答:解:(1)以O为原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系.
则有A(0,0,1),B(2,0,0),C(0,2,0),E(0,1,0).
EB
=(2,0,0)-(0,1,0)=(2,-1,0),
AC
=(0,2,-1),(2分)
cos<
EB
AC
>=
-2
5
5
= -
2
5
.(4分)
由于异面直线BE与AC所成的角是锐角,故其余弦值是
2
5
.(5分)
(2)
AB
=(2,0,-1),
AE
=(0,1,-1),设平面ABE的法向量为m1=(x,y,z),
则由m1
AB
,m1
AE
,得
2x-z=0
y-z=0

取n=(1,2,2),
平面BEC的一个法向量为n2=(0,0,1),(7分)
cos<n1.n2>=
2
1+4+4
=
2
3
(9分)
由于二面角A-BE-C的平面角是n1与n2的夹角的补角,其余弦值是-
2
3
.(10分)
点评:考查用空间向量为工具解决立体几何问题,此类题关键是找清楚线的方向向量、面的法向量,本题主要考查了两面角的计算,考查了学生综合分析问题的能力和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求O点到面ABC的距离;
(2)求异面直线BE与AC所成的角;
(3)求二面角E-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求直线BE和平面ABC的所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=2,OC=4,E是OC的中点,求二面角E-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥O-ABC中,
OA
=
a
OB
=
b
OC
=
c
,G点为△OBC的重心,则
AG
=(  )
A、
1
3
a
-
b
+
1
3
c
B、-
a
+
1
3
b
+
1
3
c
C、
1
3
a
+
1
3
b
-
c
D、-
a
+
2
3
b
+
2
3
c

查看答案和解析>>

同步练习册答案