精英家教网 > 高中数学 > 题目详情
设A为双曲线
x2
16
-
y2
9
=1右支上一点,F为该双曲线的右焦点,连AF交双曲线于B,过B作直线BC垂直于双曲线的右准线,垂足为C,求证:直线AC恒过定点.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:由于研究直线恒过定点,求出AC的方程,令y=0,求出x可得(x与直线AB斜率k无关),可证直线AC恒过定点就可解决.
解答: 证明:由双曲线的方程可得a=4,b=3,c=5,右焦点 F(5,0 ),右准线为x=
16
5

设直线AB:x=my+5,与双曲线方程
x2
16
-
y2
9
=1联立,可得(9m2-16)y2+90my+81=0,
设A(x1,y1),B(x2,y2),则y1+y2=-
90m
9m2-16
,y1y2=
81
9m2-16

用两点式求出直线AC的方程,y-y2=
y2-y1
16
5
-x1
(x-
16
5

令y=0,可得x=
-
16
5
y2+y2x1
y2-y1
+
16
5
=
-
16
5
y1+y2(my1+5)
y2-y1

=
369m
16-9m2
-
41
5
y1
90m
16-9m2
-2y1
=
41
10

∴直线AC过定点(
41
10
,0).
点评:本题考查直线恒过定点,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)求值:[(
3
4
)0]-0.5+7.5×(
44
)2-(-
1
2
)-4+81
1
4

(2)已知ax=
6
-
5
(a>0),求
a3x-a-3x
ax-a-x
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=
x-2
-
8-x
},则B={x|x≤6},则A∩B等于(  )
A、[2,6)
B、[2,6]
C、[2,8]
D、(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列给出的命题中,所有正确命题的序号为
 

①函数y=2x3-3x+1的图象关于点(0,1)成中心对称;
②对?x,y∈R,若x+y≠0,则x≠1,或y≠-1;
③若实数x,y满足x2+y2=1,则
y
x+2
的最大值为
3
3

④若△ABC为钝角三角形,则sinA<cosB.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0
(Ⅰ)求数列{an}的通项公式和前n项和Sn
(Ⅱ)数列{an}从哪一项开始小于0?
(Ⅲ)设Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1=2,且an+1=
2an
an+1
,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.
(Ⅰ)求证:BC1∥平面CA1D;
(Ⅱ)若底面ABC为边长为2的正三角形,BB1=
3
,求三棱锥B1-A1DC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1=1,且
2an
anSn-Sn2
=1(n≥2),求an

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)函数y=|3x-5|的单调递减区间是
 

查看答案和解析>>

同步练习册答案