精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)若,求的最大值和最小值;
(Ⅱ)若,求的值.

(1) 见解析;(2);(3)见解析.

解析试题分析:(1) 先将化为一角一函数形式,再根据正余弦函数的性质在定区间上求最值.此类题目必须将函数先化为一角一函数形式,化一角一函数的方法是对于函数,其中;(ⅱ)根据(1)和条件,求出,再将所求式子化简求值 .
试题解析:(I)   3分

          6分
(II)由于,所以,解得        8分
原式=       12分
考点:1.两角和差的正弦公式;2.倍角公式;3.三角函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)若,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的最大值为,最小值为,其中
(1)求的值(用表示);
(2)已知角的顶点与平面直角坐标系中的原点重合,始边与轴的正半轴重合,终边经过点.求的值.  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角中,.
(Ⅰ)求角的大小;
(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)已知向量=(),=(1,),且=,其中分别为的三边所对的角.
(Ⅰ)求角的大小;
(Ⅱ)若,且,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且.
(Ⅰ)求函数的最大值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值; 
(2)若,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的最大值为
(Ⅰ)求
(Ⅱ)将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数的单调递增区间.
(Ⅲ)该函数通过怎样的图像变换得到.

查看答案和解析>>

同步练习册答案