精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{e^x,x≤0}\\{lnx,x>0}\end{array}\right.$,其中e为自然对数的底数,则f[f($\frac{1}{2}$)]=$\frac{1}{2}$.

分析 直接利用分段函数,由里及外求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{e^x,x≤0}\\{lnx,x>0}\end{array}\right.$,
则f[f($\frac{1}{2}$)]=f[ln$\frac{1}{2}$]=${e}^{ln\frac{1}{2}}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知角α终边经过点P(a,1+3a),且cosα=-$\frac{2}{5}\sqrt{5}$,则a=-$\frac{2}{5}$ 或-$\frac{2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.棱长为2的正方体ABCD-A1B1C1D1中,已知E,F在棱C1D1上运动,且EF=1,P为CC1的中点,若Q在AB上运动,则四面体QEFP的体积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知圆C:(x-2)2+y2=4,直线${l_1}:y=\sqrt{3}\;x$,l2:y=kx-1,若l1,l2被圆C所截得的弦的长度之比为1:2,则k的值为(  )
A.$\sqrt{3}$B.1C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在边长为3的正方形内有区域A(阴影部分所示),张明同学用随机模拟的方法求区域A的面积.若每次在正方形内每次随机产生10000个点,并记录落在区域A内的点的个数.经过多次试验,计算出落在区域A内点的个数平均值为6600个,则区域A的面积约为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于定义在[0,+∞)上的函数f(x),若函数y=f(x)-(ax+b)满足:①在区间[0,+∞)上单调递减;②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b为f(x)的“渐进函数”.
(1)证明:函数g(x)=x+1是函数f(x)=$\frac{x^2+2x+3}{x+1}$,x∈[0,+∞)的渐进函数,并求此实数p的值;
(2)若函数f(x)=$\sqrt{x^2+1}$,x∈[0,+∞)的渐进函数是g(x)=ax,求实数a的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z=$\frac{2+i}{i}$=(  )
A.1-2iB.1+2iC.-1-2iD.-1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,角A,B,C所对的边分别为a,b,c.若$sinA=cos(\frac{π}{2}-B)$,a=3,c=2,则cosC=$\frac{7}{9}$;△ABC的面积为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b都是实数,那么“$\sqrt{a}$>$\sqrt{b}$”是“lna>lnb”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案