精英家教网 > 高中数学 > 题目详情
一个水平放置的平面图形的斜二测直观图是直角梯形 (如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这个平面图形的面积为(  )
A.+B.2+
C.+D.+
B
如图

将直观图ABCD还原后为直角梯形A'BCD',其中A'B=2AB=2,BC=1+,A'D'=AD=1.
∴S=×(1+1+)×2=2+.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(1)求证:BE⊥平面PCD;
(2)求二面角A一PD-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­DCD1.

(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1­EC­D的平面角为?若存在,求出AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是正方形所在平面外一点,且,若分别是的中点.

(1)求证:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角等于   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l的方向向量为s=(-1,1,1),平面π的法向量为n=(2,x2+x,-x),若直线l∥平面π,则x的值为(  )
A.-2B.-C.D.±

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有下列四个命题:
①(a·b)2=a2·b2;②|a+b|>|a-b|;③|a+b|2=(a+b)2;④若a∥b,则a·b=|a|·|b|.其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

⊿ABC的三个顶点分别是,则AC边上的高BD长为(   ) 
A.B.4 C.5D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,以点A(4,1,9),B(10,-1,6),C(x,4,3)为顶点的△ABC是以BC为斜边的等腰直角三角形,则实数x的值为    .

查看答案和解析>>

同步练习册答案