精英家教网 > 高中数学 > 题目详情
9.求值域:
(1)y=$\sqrt{2}$cos(2x-$\frac{π}{4}$),x∈[-$\frac{π}{8}$,$\frac{π}{2}$];
(2)y=-3sin2x-4cosx+4.

分析 (1)根据x∈[-$\frac{π}{8}$,$\frac{π}{2}$],求解出2x-$\frac{π}{4}$∈[$-\frac{π}{2}$,$\frac{3π}{4}$],利用余弦函数的性质求解值域即可.
(2)利用同角三角函数关系式化简,转为二次函数,利用其单调性求解值域即可.

解答 解:(1)函数y=$\sqrt{2}$cos(2x-$\frac{π}{4}$),
∵x∈[-$\frac{π}{8}$,$\frac{π}{2}$];
∴2x-$\frac{π}{4}$∈[$-\frac{π}{2}$,$\frac{3π}{4}$],
当2x-$\frac{π}{4}$=0时,函数y取得最大值为$\sqrt{2}$;
当2x-$\frac{π}{4}$=$\frac{3π}{4}$时,函数y取得最小值为-1.
故得y=$\sqrt{2}$cos(2x-$\frac{π}{4}$),x∈[-$\frac{π}{8}$,$\frac{π}{2}$]的值域为[-1,$\sqrt{2}$].
(2)y=-3sin2x-4cosx+4=-3(1-cos2x)-4cosx+4=3cos2x-4cosx+1,
令cosx=t,则-1≤t≤1,
函数y转化为f(t)=3t2-4t+1,
开口向上,对称轴t=$\frac{2}{3}$,
当t=$\frac{2}{3}$时,函数g(t)取得最小值为$-\frac{1}{3}$.
当t=-1时,函数g(t)取得最大值为8.
故得y=-3sin2x-4cosx+4的值域为[-$\frac{1}{3}$,8].

点评 本题考查了函数值域的求法.利用了三角函数的性质和二次函数的单调性.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图所示,是一个正方体的表面展开图,则图中“2”所对的面是(  )
A.1B.7C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=-1对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=0.76f(0.76),b=log${\;}_{\frac{10}{7}}$6f(log${\;}_{\frac{10}{7}}$6),c=60.6f(60.6),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)=$\left\{\begin{array}{l}{2x-1,(x≥2)}\\{f[f(x+1)]+1,(x<2)}\end{array}\right.$,则f(1)=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x2+$\frac{1}{\sqrt{1+x}}$,x∈[0,1],证明:$\frac{15}{16}$<f(x)≤$\frac{2+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知映射f:R→R,x→2x+1,求得f(x)=7时的原象x是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x|x-a|+b,a,b∈R若对于给定的实数a(a≥2),存在实数b,?x1,x2∈[1,2],都有不等式|f(x1)-f(x2)|≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=3x+b的图象不经过第二象限,则b的取值范围为(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,长方体ABCD-A1B1C1D1中,AB=3,BC=4,CC1=5,则沿着长方体表面从A到C1的最短路线长为$\sqrt{74}$.

查看答案和解析>>

同步练习册答案