精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=lg(1+ax)是(-∞,-1)上的减函数,则a的取值范围是(-∞,0).

分析 由题意可得可得a<0,且1-a≥0,由此求得a的范围.

解答 解:函数f(x)=lg(1+ax)是(-∞,-1)上的减函数,可得a<0,且1-a≥0,
求得a<0,
故答案为:(-∞,0).

点评 本题主要考查复合函数的单调性,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.集合A满足条件:若a∈A,则f(a)=$\frac{2a}{2a+1}$∈A,且f(f(a))∈A,依此类推.f(f(f(a)))∈A,…,依此类推.
(1)若集合A为单元素集,求a和A;
(2)满足条件的集合A中是否可有两个元素?若存在,求出集合A;若不存在,说明理由;
(3)用描述法写出一个满足条件的无穷集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解下列方程:
(1)5x+1=${3}^{{x}^{2}-1}$
(2)${log}_{2}{(9}^{x}-5)$)=${log}_{2}{(3}^{x}-2)$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=mlog3x+nlog5x+2.且f($\frac{1}{2015}$)=2.则f(2015)=(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知平面$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow{b}$=(x,y)(x>0),且|$\overrightarrow{b}$|=1.若对任意的实数t都有|t$\overrightarrow{a}$-$\overrightarrow{b}$|≥1,求向量$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=-$(\frac{1}{7})^{-2{x}^{2}-7x+7}$+7的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知2≤x≤8,求函数y=(1og2x)2-51og2x+1的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:5${\;}^{lo{g}_{\sqrt{5}}4}$+lg8+3lg5+0.25×(-$\frac{1}{2}$)-4-4÷($\sqrt{5}$-1)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=4cos(3x-$\frac{π}{6}$)+2b,当x∈[-$\frac{π}{6}$,$\frac{π}{6}$]时,0≤f(x)≤6.
(1)求f(x)的解析式;
(2)求f(x)取最小值时自变量取值构成的集合.

查看答案和解析>>

同步练习册答案