精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,其中

1)若数列前四项依次成等差数列,求的值;

2)若,且数列为等比数列,求的值;

3)若,且是数列的最小项,求的取值范围.

【答案】(1) 2)答案不唯一,见解析 3

【解析】

1)由已知求出,由等差数列的定义得的方程可求解;

2)由求出值,代入已知递推式求出,验证它是等比数列;

3)当时,用累加法求得,由恒成立得,恒成立.用作差法证明数列是递增数列,从而可得最小值,得的一个范围,再由的另外一些范围后可得的范围

1)由已知递推式可得,

由等差数列知,,得

2,则

,得

时,,满足题意;

时,由累加法得,满足题意;

3时,

时,由恒成立得,恒成立.

,只需求出的最小值.

时,,有

时,直接验证

为最小值,其值为,∴

时,需满足恒成立,

验证,

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电器专卖店销售某种型号的空调,记第天()的日销售量为(单位;台).函数图象中的点分别在两条直线上,如图,该两直线交点的横坐标为,已知时,函数

1)当时,求函数的解析式;

2)求的值及该店前天此型号空调的销售总量;

3)按照经验判断,当该店此型号空调的销售总量达到或超过台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某传动装置由两个陀螺组成,陀螺之间没有滑动,每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且的轴相互垂直,它们相接触的直线与的轴所成角,若陀螺中圆锥的底面半径为);

1)求陀螺的体积;

2)当陀螺转动一圈时,陀螺中圆锥底面圆周上一点转动到点,求之间的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数(其中

1)求的值;

2)讨论的单调性;

3)当的定义域区间为时,的值域为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点),都在函数)的图像上;

1)若数列是等差数列,求证:数列是等比数列;

2)设,函数的反函数为,若函数与函数的图像有公共点,求证:在直线上;

3)设),过点的直线与两坐标轴围成的三角形面积为,问:数列是否存在最大项?若存在,求出最大项的值,若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在折线中,,,分别是的中点,若折线上满足条件的点至少有个,则实数的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一块长方形区域在边的中点处有一个可转动的探照灯其照射角始终为探照灯照射在长方形内部区域的面积为.

(1)当时,求关于的函数关系式;

(2)当时,求的最大值;

(3)若探照灯每9分钟旋转“一个来回”(转到,再回到,称“一个来回”,忽略处所用的时间),且转动的角速度大小一定,设边上有一点,且,求点在“一个来回”中被照到的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

同步练习册答案