精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,射线的普通方程为,曲线的参数方程为为参数).O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出的极坐标方程;

2)设的交点为P(点P不为极点),的交点为Q,当上变化时,求的最大值.

【答案】1;(2

【解析】

1)根据普通方程与参数方程的互相转化,直角坐标方程与极坐标方程的互化公式,可以得到的极坐标方程;

2)联立的方程求得,再联立曲线的极坐标方程求得,再通过三角恒等变换就可求得的最大值为.

1)射线的极坐标方程为

曲线的极坐标方程为

2)曲线的极坐标方程与射线的极坐标方程联立得

;曲线与曲线的极坐标方程联立得,即

所以

其中的终边经过点,当时,

取得最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是抛物线上任意一点,,且点为线段的中点.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)若为点关于原点的对称点,过的直线交曲线 两点,直线交直线于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与双曲线有相同的焦点,且椭圆与双曲线交于一点

1)求的值;

2)若双曲线上一点Q到左焦点的距离为3,求它到双曲线右准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂产生的废气经过过滤后排放,规定排放时污染物的残留含量不得超过1%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为:为正常数,为原污染物数量).若前5个小时废气中的污染物被过滤掉了90%,那么要能够按规定排放废气,至少还需要过滤(

A. 小时B. 小时C. 5小时D. 小时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,记

1)证明:有且仅有一个零点;

2)记的零点为,若内有两个不等实根,判断的大小,并给出对应的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100/平方米,底面的建造成本为160/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).

1)将V表示成r的函数Vr),并求该函数的定义域;

2)讨论函数Vr)的单调性,并确定rh为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为平行四边形,.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:关于的不等式无解;命题:指数函数上的增函数.

(1)若命题为真命题,求实数的取值范围;

(2)若满足为假命题且为真命题的实数取值范围是集合,集合,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若存在实数,使得,求正实数的取值范围.

查看答案和解析>>

同步练习册答案