精英家教网 > 高中数学 > 题目详情

已知函数

       (I)求上的最小值;

       (II)对一切恒成立,求实数的取值范围;

       (Ⅲ)证明对一切,都有成立.

(1),令

为增函数,无极值;

,   为减函数;为增函数;极小值为

…………………………………4分

(2),原不等式等价于

,则

所以的最小值为,即 …………………………………8分

(3)原不等式等价于

则可求的最小值为的最大值为

所以原不等式成立.

…………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

0423

 
(本题满分15分)已知函数 

   (I)若函数的图象过原点,且在原点处的切线斜率是,求的值;

   (II)若函数在区间上不单调,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012届丹东市四校协作体高三摸底测试数学(零诊) (文) 题型:解答题

(本小题满分12分)已知函数
(I)当时,若函数上单调递减,求实数的取值范围;
(II)若,且过原点存在两条互相垂直的直线与曲线均相切,求的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省临沂市临沭县高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(I)求f(x)的值域;
(II)试画出函数f(x)在区间[-1,5]上的图象.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州市高三(上)12月质量检查数学试卷(文科)(解析版) 题型:解答题

已知函数
(I )求函数f(x)的周期和最小值;
(II)在锐角△ABC中,若f(A)=1,,,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源:2011年云南省高一上学期期末考试数学试卷 题型:解答题

(10分)已知函数,且

.(I)求的值;(II)求函数在[1,3]上的最小值和最大值.

 

 

查看答案和解析>>

同步练习册答案