【题目】某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出: y=
求从上午6点到中午12点,通过该路段用时最多的时刻.
【答案】解:①当6≤t<9时,
y′=﹣ t2﹣ t+36=﹣ (t+12)(t﹣8)
令y′=0,得t=﹣12(舍去)或t=8.
当6≤t<8时,y′>0,当8<t<9时,y′<0,
故t=8时,y有最大值,ymax=18.75
②当9≤t≤10时,y= t+ 是增函数,
故t=10时,ymax=16
③当10<t≤12时,y=﹣3(t﹣11)2+18,
故t=11时,ymax=18
综上可知,通过该路段用时最多的时刻为上午8点
【解析】通过分段函数①当6≤t<9时,利用函数的导数求出最大值;②当9≤t≤10时,通过函数的单调性求解最大值,③当10<t≤12时,利用二次函数求解函数的最值,推出结果.
【考点精析】根据题目的已知条件,利用函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数, 为常数.
(1)确定的值;
(2)求证: 是上的增函数;
(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.
(1)求正视图的面积;
(2)求四棱锥P-ABCD的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上. (Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x).当x∈[0,1]时,f(x)=2x.若在区间[﹣2,3]上方程ax+2a﹣f(x)=0恰有四个不相等的实数根,则实数a的取值范围是( )
A.( , )
B.( , )
C.( ,2)
D.(1,2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b. (0 <φ < π)
(1)求这段时间的最大温差;
(2)写出这段曲线的函数解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数满足: ,且该函数的最小值为1.
(1)求此二次函数的解析式;
(2)若函数的定义域为(其中),问是否存在这样的两个实数, ,使得函数的值域也为?若存在,求出, 的值;若不存在,请说明理由.
(3)若对于任意的,总存在使得,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]上单调递增,则φ的取值范围是( )
A.[ , ]
B.[ , )
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有命题:
①y=|sinx-|的周期是2π;
②y=sinx+sin|x|的值域是[0,2] ;
③方程cosx=lgx有三解;
④为正实数,在上递增,那么的取值范围是;
⑤在y=3sin(2x+)中,若f(x)=f(x2)=0,则x1-x2必为的整数倍;
⑥若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在第二象限;
⑦在中,若,则钝角三角形。
其中真命题个数为( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com