已知函数.
(1)若,求证:当时,;
(2)若在区间上单调递增,试求的取值范围;
(3)求证:.
(1) 详见解析;(2) 的取值范围;(3)详见解析.
【解析】
试题分析:(1) 当时,求证:当时,,将代入,得,注意到,只要证明当时,单调递增,则,由于中含有指数函数,可对求导得,只需证明当时,即可,注意到,只要证明当时,单调递增即可,因此令,对求导得,显然当时,,问题得证;(2) 求实数的取值范围,由于在区间上单调递增,则当时,,故对求导得,即当时,恒成立,即)恒成立,只需求出的最小值即可,令,对求导得,令导数等于零,解出的值,从而的最小值,进而得实数的取值范围;
(3)求证:,由(1) 知:当时,,即,可得,两边取对数得,令,得,再令,得个式子相加,然后利用放缩法可证得结论.
试题解析:(1) ,则h(x)=,∴h′(x)=ex-1>0(x>0),
∴h(x)=f′(x)在(0,+∞)上递增,∴f′(x)>f′(0)=1>0,
∴f(x)=ex-x2在(0,+∞)上单调递增,故f(x)>f(0)=1.( 4分)
(2) f′(x)=ex-2kx,下面求使 (x>0)恒成立的k的取值范围.
若k≤0,显然f′(x)>0,f(x)在区间(0,+∞)上单调递增;
记φ(x)=ex-2kx,则φ′(x)=ex-2k,
当0<k<时,∵ex>e0=1, 2k<1,∴φ′ (x)>0,则φ(x)在(0,+∞)上单调递增,
于是f′(x)=φ(x)>φ(0)=1>0,∴f(x)在(0,+∞)上单调递增;
当k≥时,φ(x)=ex-2kx在(0,ln 2k)上单调递减,在(ln 2k,+∞)上单调递增,
于是f′(x)=φ(x)≥φ(ln 2k)=eln 2k-2kln 2k,
由eln 2k-2kln 2k≥0得2k-2kln 2k≥0,则≤k≤,
综上,k的取值范围为(-∞,]. 9分
另解:(2) ,下面求使(x>0)恒成立的k的取值范围.
)恒成立。记
在上单调递减,在上单调递增。
综上,k的取值范围为(-∞,].( 9分)
(3)由(1)知,对于x∈(0,+∞),有f(x)=ex>x2+1,∴e2x>2x2+1,
则ln(2x2+1)<2x,从而有ln(+1)< (n∈N*),
于是ln(+1)+ln(+1)+ln(+1)+ +ln(+1)<++ +<++ +=2+2(1-+ +-)=4-<4,故(+1)(+1)(+1) (+1)<e4.( 14分)
另解:(3)由(1)知,对于x∈(0,+∞),有f(x)=ex>x2+1,∴e2x>2x2+1,
则ln(2x2+1)<2x,从而有ln(+1)< (n∈N*),
又
于是ln(+1)+ln (+1)+ln(+1)+ +ln(+1)<
故(+1)(+1)(+1) (+1)<e4. ( 14分)
考点:利用导数研究函数的单调性;函数恒成立问题;导数在最大值、最小值问题中的应用,导数与不等式问题.
科目:高中数学 来源:2012-2013学年湖南省岳阳市高三第一次质量检测理科数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)若为的极值点,求实数的值;
(2)若在上为增函数,求实数的取值范围;
(3)当时,方程有实根,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源:吉林省10-11学年高二下学期期末考试数学(理) 题型:解答题
已知函数.
(1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率;
(2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com