精英家教网 > 高中数学 > 题目详情
9.顶点在原点,焦点是(0,-2)的抛物线方程是(  )
A.x2=8yB.x2=-8yC.y2=8xD.y2=-8x

分析 由已知可设抛物线方程为x2=-2py(p>0),再由焦点坐标求得p,则抛物线方程可求.

解答 解:由题意可设抛物线方程为x2=-2py(p>0),
由焦点是(0,-2),得$-\frac{p}{2}=-2$,则p=4.
∴抛物线方程为x2=-8y.
故选:B.

点评 本题考查抛物线的简单性质,考查了抛物线方程的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.求满足${(\frac{1}{4})^{x-1}}$>16的x的取值集合是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数$f(x)=\left\{\begin{array}{l}1+{log_2}(2-x),x<1\\{2^{x-2}},x≥1\end{array}\right.$,则f(-2)+f(log212)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题:?x∈R,则2x2+2x+$\frac{1}{2}$<0的否定是(  )
A.?x∈R,则2x2+2x+$\frac{1}{2}$≥0B.?x0∈R,则2x02+2x0+$\frac{1}{2}$≥0
C.?x0∈R,则2x02+2x0+$\frac{1}{2}$<0D.?x∈R,则2x2+2x+$\frac{1}{2}$>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)=x2+2x-5且A(1,-2),则以点A为切点的切线方程为4x-y-6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{m}$=1的离心率为2,则m=24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=log2x在[1,2]上的值域是(  )
A.RB.[0,+∞)C.(-∞,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(sinωx,0)(ω>0),且函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$在[-$\frac{π}{6}$,0]上的最小值为$-\sqrt{3}$,将函数f(x)的图象上所有的点向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到的函数g(x)的图象,且已知函数g(x)的图形关于直线x=$\frac{7π}{12}$对称.
(1)求函数g(x)的解析式;
(2)在△ABC中,a,b,c分别为∠A,∠B,∠C对应的边,若函数g(A)=0,a=5,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a>0,则“关于x的方程ax=b解集为{x0}”的充要条件的序号是③.
①存在x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
②存在x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
③任意x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
④任意x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0

查看答案和解析>>

同步练习册答案