精英家教网 > 高中数学 > 题目详情

【题目】如图,在由圆O:x2+y2=1和椭圆C: =1(a>1)构成的“眼形”结构中,已知椭圆的离心率为 ,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得 = ,若存在,求此时直线l的方程;若不存在,请说明理由.

【答案】
(1)解:∵椭圆C: =1(a>1)的离心率为

解得:a2=3,所以所求椭圆C的方程为


(2)解:假设存在直线l,使得 =

当直线l垂直于x轴时,不符合题意,故设直线l方程为y=kx+b,

由直线l与圆O相切,可得b2=k2+1 …(1)(7分)

直线ly=kx+b代入椭圆C的方程为 ,可得(1+3k2)x2+6kbx+3b2﹣3=0

设A(x1,y1)、B(x2,y2),则

= = …(2)

由(1)(2)可得k2=1,b2=2

故存在直线l,方程为 ,使得 =


【解析】(1)根据椭圆C: =1(a>1)的离心率为 ,可得a2=3,从而可求椭圆C的方程;(2)假设存在直线l,使得 = ,当直线l垂直于x轴时,不符合题意,故设直线l方程为y=kx+b,由直线l与圆O相切,可得b2=k2+1,直线l代入椭圆C的方程为 ,可得(1+3k2)x2+6kbx+3b2﹣3=0 设A(x1 , y1)、B(x2 , y2),进而利用 = ,即可知存在直线l.
【考点精析】通过灵活运用椭圆的标准方程,掌握椭圆标准方程焦点在x轴:,焦点在y轴:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于原点对称,其中为常数.

1)求的值;

2)当时, 恒成立,求实数的取值范围;

3若关于的方程上有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的两顶点坐标A(﹣1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.
(I)求曲线M的方程;
(Ⅱ)设直线BC与曲线M的另一交点为D,当点A在以线段CD为直径的圆上时,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①定义在R上的函数f(x)满足f(2)>f(1),则f(x)一定不是R上的减函数;
②用反证法证明命题“若实数a,b,满足a2+b2=0,则a,b都为0”时,“假设命题的结论不成立”的叙述是“假设a,b都不为0”.
③把函数y=sin(2x+ )的图象向右平移 个单位长度,所得到的图象的函数解析式为y=sin2x.
④“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充分不必要条件.
其中所有正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为 ;两小时以上且不超过三小时还车的概率分别为 ;两人租车时间都不会超过四小时. (Ⅰ)求甲乙两人所付的租车费用相同的概率.
(Ⅱ)设甲乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数集,其中, .定义向量集.若对于任意,存在,使得,则称具有性质.例如具有性质.

(1)若,且具有性质,求的值;

(2)若具有性质,求证: ,且当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 则f(﹣1)= , 若方程f(x)=m有两个不同的实数根,则m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:方程 + =1表示双曲线;命题q:x∈R,使得x2+mx+m+3<0成立.若“p且¬q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}及fn(x)=a1x+a2x2+…+anxn , fn(﹣1)=(﹣1)nn,n=1,2,3,…
(1)求a1 , a2 , a3的值;
(2)求数列{an}的通项公式;
(3)求证:

查看答案和解析>>

同步练习册答案