精英家教网 > 高中数学 > 题目详情
17.如图,四棱锥S-ABCD中,SA=SD=BC,底面ABCD为正方形,且平面SAD⊥平面ABCD,M,N分别是AB,SC的中点.
(1)若R为CD中点,分别连接MR,RN,NM,求证:BC∥平面MNR;
(2)求二面角S-CM-D的余弦值.

分析 (1)推导出四边形MBCR是平行四边形,从而RC∥MB,由此能证明BC∥平面MNR.
(2)取AD的中点O,连结OS,过O作AD的垂线交BC于G,分别以OA、OG、OS为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角S-CM-D的余弦值.

解答 证明:(1)∵四边形ABCD为正方形,∴AB∥DC,AB=DC,
∵M,N分别是AB,DC的中点,
∴RC∥MB,RC=MB,
∴四边形MBCR是平行四边形,
∴RC∥MB,
∵BC?平面MNR,MB?平面MNR,
∴BC∥平面MNR.
解:(2)取AD的中点O,连结OS,
过O作AD的垂线交BC于G,分别以OA、OG、OS为x轴,y轴,z轴,建立空间直角坐标系,
设正方形ABCD的边长为2,
则C(-1,2,0),M(1,1,0),S(0,0,$\sqrt{3}$),
∴$\overrightarrow{CM}$=(2,-1,0),$\overrightarrow{SM}$=(1,1,-$\sqrt{3}$),
设平面SCM的一个法向量$\overrightarrow{n}$=(x,y,z)
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CM}=2x-y=0}\\{\overrightarrow{n}•\overrightarrow{SM}=x+y-\sqrt{3}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,2,$\sqrt{3}$),
平面ABCD的一个法向量$\overrightarrow{m}$=(0,0,1),
设二面角S-CM-D的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{8}}=\frac{\sqrt{6}}{4}$.
∴二面角S-CM-D的余弦值为$\frac{\sqrt{6}}{4}$.

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2,则当x<0时,f(x)=2x+x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$log_7^{\root{3}{49}}$的值为(  )
A.2B.$\frac{2}{3}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆方程为x2+y2-2x-9=0,直线方程mx+y+m-2=0,那么直线与圆的位置关系(  )
A.相交B.相离C.相切D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在钝角△ABC中,c=$\sqrt{3}$,b=1,B=$\frac{π}{6}$,则△ABC的面积等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C的参数方程:$\left\{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}\right.$(α为参数),曲线C上的点M(1,$\frac{\sqrt{2}}{2}$)对应的参数α=$\frac{π}{4}$,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,点P的极坐标是($\sqrt{2}$,$\frac{π}{2}$),直线l过点P,且与曲线C交于不同的两点A、B.(1)求曲线C的普通方程;
(2)求|PA|•|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设一组数据的方差是0.1,将这组数据的每个数据都乘以10,所得到的一组新数据的方差是(  )
A.10B.0.1C.0.001D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“若x>2,则x2-3x+2>0”的否命题是(  )
A.若x2-3x+2<0,则x≥2B.若x≤2,则x2-3x+2≤0
C.若x2-3x+2<0,则x≥2D.若x2-3x+2≤0,则x≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.把半椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(x≥0)与圆弧(x-c)2+y2=a2(x<0)合成的曲线称作“曲圆”,其中F(c,0)为半椭圆的右焦点.如图,A1,A2,B1,B2
分别是“曲圆”与x轴、y轴的交点,已知∠B1FB2=$\frac{2π}{3}$,扇形FB1A1B2的面
积为$\frac{4π}{3}$.
(1)求a,c的值; 
(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L表示为θ的函数;
(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.

查看答案和解析>>

同步练习册答案