精英家教网 > 高中数学 > 题目详情
17.若函数f(x)=2x3+bx2+cx+d是奇函数,定义域为[2c-3,c],求b,c,d的值.

分析 函数f(x)=2x3+bx2+cx+d是奇函数,定义域为[2c-3,c],可得2c-3+c=0,f(-x)=-f(x),即可求b,c,d的值.

解答 解:∵函数f(x)=2x3+bx2+cx+d是奇函数,定义域为[2c-3,c],
∴2c-3+c=0,f(-x)=-f(x),
∴c=1,-2x3+bx2-cx+d=-2x3-bx2-cx-d,
∴c=1,b=d=0.

点评 本题考查函数的奇偶性,考查学生的计算能力,正确运用函数是奇函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}中,a1=2,an+1=4an-3n十1,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过点M(2,4)作互相垂直的两条直线l1,l2,直线l1与x轴正半轴交于点A,直线l2与y轴正半轴交于点B.
(1)求当△A0B的面积达到最大值时,原点到直线AB的距离;
(2)若直线AB将四边形0AMB分成两部分,且S△AOB=$\frac{1}{3}$S四边形OAMB,求直线l1的斜率..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知过点M(2,1),且分别与x轴,y轴的正半轴交于A、B两点,O为原点,是否存在使△ABO的面积最小的直线l?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=$\sqrt{|sinx+cosx|-1}$的定义域是(  )
A.[kπ,kπ+$\frac{π}{2}$](k∈Z)B.[2kπ,2kπ+$\frac{π}{2}$](k∈Z)C.[-$\frac{π}{2}$+kπ,kπ](k∈Z)D.[-$\frac{π}{2}$+2kπ,2kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$=(cos2x,sin2x),$\overrightarrow{b}$=(cosα,sinα),其中x∈R,α∈[0,2π].
(1)计算|$\overrightarrow{a}$|=1;
(2)若$\overrightarrow{c}$=$\overrightarrow{a}$-$\overrightarrow{b}$,则|$\overrightarrow{c}$|的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是定义域为R的奇函数,且f(-x)=f(2+x).
(I)求f(0)的值;
(II)证明函数f(x)是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ax2+bx+1(a、b∈R且a≠0),若f(-1)=0,且对任意实数x不等式f(x)≥0恒成立.
(1)求实数a、b的值;
(2)若函数g(x)=f(x)-kx在[-2,2]上为单调函数,求实数k取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知有相同的两焦点F1,F2的椭圆$\frac{{x}^{2}}{m}$+y2=1(m>1)和双曲线$\frac{{x}^{2}}{n}$-y2=1(n>0),P是它们的一个交点,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$等于(  )
A.1B.$\frac{1}{2}$
C.0D.随m,n的变化而变化

查看答案和解析>>

同步练习册答案