(本题满分12分)已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件,需要另投入2.7万元.设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.
(I)写出年利润(万元)关于年产量(千件)的函数关系式;
(Ⅱ)年生产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
(1)
(2) 当年产量为千件时,该公司在这一品牌服装的生产中所获年利润最大,最大值为万元
【解析】
试题分析:解:(I)当时,;
当时,.
∴ 年利润(万元)关于年产量(千件)的函数关系式为
…………………6分
(Ⅱ)当时,由,
即年利润在上单增,在上单减
∴ 当时,取得最大值,且(万元).
当时,,仅当时取“=”
综上可知,当年产量为千件时,该公司在这一品牌服装的生产中所获年利润最大,最大值为万元. …………………12分
考点:本试题考查了函数模型在实际生活中的的运用。
点评:解决应用题,首先是审清题意,然后利用已知的关系式表述出利润函数:收入-成本=利润。将实际问题转换为代数式,然后利用函数的性质,或者均值不等式来求解最值,但是要注明定义域,属于中档题。
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题
(本题满分12分)已知△的三个内角、、所对的边分别为、、.,且.(1)求的大小;(2)若.求.
查看答案和解析>>
科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题
(本题满分12分)已知各项均为正数的数列,
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题
(本题满分12分)
已知椭圆:的长轴长是短轴长的倍,,是它的左,右焦点.
(1)若,且,,求、的坐标;
(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线(是切点),且使,求动点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题
(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量
(1)求椭圆的离心率
(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com