【题目】以平面直角坐标系的原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,已知过点且斜率为1的直线与曲线:(是参数)交于两点,与直线:交于点.
(1)求曲线的普通方程与直线的直角坐标方程;
(2)若的中点为,比较与的大小关系,并说明理由.
【答案】(1);(2),详见解析
【解析】
(1)将方程消参得到,即为曲线C的普通方程,利用极坐标与直角坐标之间的转化关系,将化为,即为直线的直角坐标方程;
(2)联立消去y得,设点,,则由中点公式,得点M的坐标是,由韦达定理得到点M的坐标是(4,3),联立,求得点N的坐标是,应用两点间距离公式和弦长公式求得与的值,比较可得结果.
(1)由得:
,
故曲线C的普通方程是;
由及公式得,
故直线的直角坐标方程是.
(2)因为直线过点且斜率为1,
所以根据点斜式得,直线的方程为,即.
曲线C:是以点为圆心,为半径的圆,
联立消去y得.
设点,,则由中点公式,得点M的坐标是.
由韦达定理,得,,所以,
所以点M的坐标是(4,3).
联立解得,故点N的坐标是.
所以由两点间的距离公式,得.
所以由弦长公式,得弦长.
因为,
所以.故.
科目:高中数学 来源: 题型:
【题目】现有某种不透明充气包装的袋装零食,每袋零食附赠玩具A,B,C中的一个.对某零售店售出的100袋零食中附赠的玩具类型进行追踪调查,得到以下数据:
BBABC ACABA AAABC BABAA CAAAB
ABCCC BCBBC CABCA BACAB BCBCB
BCCCA BCCAA BCCCB ACCBB BACAB
ACCAB BBBAA CABCA BCBBC CABCA
(1)能否认为购买一袋该零食,获得玩具A,B,C的概率相同?请说明理由;
(2)假设每袋零食随机附赠玩具A,B,C是等可能的,某人一次性购买该零食3袋,求他能从这3袋零食中集齐玩具A,B及C的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,若,b=f(log24.2),c=f(20.7),则a,b,c的大小关系为( )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋中装有大小相同的5个小球,编号分别为0,1,2,3,4,现从中随机地摸一个球,记下编号后放回,连摸3次,若摸出的3个小球的最大编号与最小编号之差为2,则共有________种不同的摸球方法(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的图象如图所示,先将函数图象上所有点的横坐标变为原来的6倍,纵坐标不变,再将所得函数的图象向左平移个单位长度,得到函数的图象,下列结论正确的是( )
A.函数是奇函数B.函数在区间上是增函数
C.函数图象关于对称D.函数图象关于直线对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有_________种.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线的焦点的直线与抛物线交于两点,若且中点的纵坐标为3.
(Ⅰ)求的值;
(Ⅱ)过点的直线交抛物线于不同两点,分别过点、点分别作抛物线的切线,所得的两条切线相交于点.求的面积的最小值及此时的直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com