精英家教网 > 高中数学 > 题目详情

【题目】已知函数有三个不同的零点(其中),则的值为( )

A. B. C. D. 1

【答案】D

【解析】

令y=,从而求导y′=以确定函数的单调性及取值范围,再令=t,从而化为t2+(a﹣1)t+1﹣a=0有两个不同的根,从而可得a﹣3或a1,讨论求解即可.

令y=,则y′=

故当x(0,e)时,y′>0,y=是增函数,当x∈(e,+∞)时,y′>0,y=是减函数;且=﹣∞,==0;

=t,则可化为t2+(a﹣1)t+1﹣a=0,故结合题意可知,t2+(a﹣1)t+1﹣a=0有两个不同的根,

△=(a﹣1)2﹣4(1﹣a)>0,故a﹣3或a1,不妨设方程的两个根分别为t1,t2

若a<﹣3,t1+t2=1﹣a>4,

与t1且t2相矛盾,故不成立;

若a1,则方程的两个根t1,t2一正一负;

不妨设t1<0<t2,结合y=的性质可得,=t1=t2=t2

故(1﹣2(1﹣)(1﹣

=(1﹣t12(1﹣t2)(1﹣t2

=(1﹣(t1+t2)+t1t22

∵t1t2=1﹣a,t1+t2=1﹣a,

∴(1﹣2(1﹣)(1﹣)=1;

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (aR).

(1)f(x)x=0处取得极值,确定a的值,并求此时曲线yf(x)在点(1,f(1))处的切线方程;

(2)f(x)[3,+∞)上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:

分组

频数

频率

[-3, -2)

 

0.10

[-2, -1)

8

 

(1,2]

 

0.50

(2,3]

10

 

(3,4]

 

 

合计

50

1.00

)将上面表格中缺少的数据填在答题卡的相应位置;

)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;

)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列不等式组中,同解的是 (   )

A. B. x2﹣3x+2>0

C. >0 D. (x﹣2)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a、b、c分别是角A、B、C的对边,且 =﹣
(Ⅰ)求角B的大小;
(Ⅱ)若b= ,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求实数的取值范围;

(3)设函数,若在区间上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面.

1)证明: 平面

2)求直线与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中, ,数列满足

(1)求证:数列是等差数列。

(2)试确定数列中的最大项和最小项,并求出相应项的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,且与直线3x﹣4y+1=0相切.

(1)求圆C的方程;

(2)若直线l:y=kx+2与圆C交于M,N两点,是否存在直线l,使得(O为坐标原点)若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案