【题目】已知函数有三个不同的零点(其中),则的值为( )
A. B. C. D. 1
【答案】D
【解析】
令y=,从而求导y′=以确定函数的单调性及取值范围,再令=t,从而化为t2+(a﹣1)t+1﹣a=0有两个不同的根,从而可得a<﹣3或a>1,讨论求解即可.
令y=,则y′=,
故当x∈(0,e)时,y′>0,y=是增函数,当x∈(e,+∞)时,y′>0,y=是减函数;且=﹣∞,=,=0;
令=t,则可化为t2+(a﹣1)t+1﹣a=0,故结合题意可知,t2+(a﹣1)t+1﹣a=0有两个不同的根,
故△=(a﹣1)2﹣4(1﹣a)>0,故a<﹣3或a>1,不妨设方程的两个根分别为t1,t2,
①若a<﹣3,t1+t2=1﹣a>4,
与t1≤且t2≤相矛盾,故不成立;
②若a>1,则方程的两个根t1,t2一正一负;
不妨设t1<0<t2,结合y=的性质可得,=t1,=t2,=t2,
故(1﹣)2(1﹣)(1﹣)
=(1﹣t1)2(1﹣t2)(1﹣t2)
=(1﹣(t1+t2)+t1t2)2
又∵t1t2=1﹣a,t1+t2=1﹣a,
∴(1﹣)2(1﹣)(1﹣)=1;
故选:D.
科目:高中数学 来源: 题型:
【题目】设函数f(x)= (a∈R).
(1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在[3,+∞)上为减函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:
分组 | 频数 | 频率 |
[-3, -2) |
| 0.10 |
[-2, -1) | 8 |
|
(1,2] |
| 0.50 |
(2,3] | 10 |
|
(3,4] |
|
|
合计 | 50 | 1.00 |
(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求实数的取值范围;
(3)设函数,若在区间上至少存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,且与直线3x﹣4y+1=0相切.
(1)求圆C的方程;
(2)若直线l:y=kx+2与圆C交于M,N两点,是否存在直线l,使得(O为坐标原点)若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com