精英家教网 > 高中数学 > 题目详情
已知圆M:(x-m)2+(y-n)2=4(m,n∈R),圆M与y轴交于A,B两点,若|
MA
+
MB
|=2
,则|
AB|
=
2
3
2
3
分析:设AB的中点为C,连结CM,利用平面向量的加法法则和垂径定理,结合题中数据在Rt△ACM中算出AC长,即可得到向量
AB
的模.
解答:解:设AB的中点为C,连结CM,
由平面向量的加法法则,可得
MA
+
MB
=2
MC

|
MA
+
MB
|=2
,∴
|MC|
=1
∵AB是圆M的弦,C为AB中点,∴CM⊥AB,
由圆的方程得圆半径为2,
Rt△ACM中,|
AC
|
=
AM
2
-
MC
2
=
22-12
=
3
,可得|
AB
|=2|
AC
|
=2
3

故答案为:2
3
点评:本题给出圆的弦AB满足的向量式,求弦AB的长.着重考查了圆的性质、平面向量的加法法则和勾股定理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:(x-m)2+(y-n)22及定点N(1,0),点P是圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0.
(Ⅰ)若m=-1,n=0,r=4,求点G的轨迹C的方程;
(Ⅱ)若动圆M和(Ⅰ)中所求轨迹C相交于不同两点A、B,是否存在一组正实数m,n,r使得直线MN垂直平分线段AB,若存在,求出这组正实数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+
5
2+y2=36,定点N(
5
,0),点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0.
(I)求点G的轨迹C的方程;
(II)点F(x,y)在轨迹C上,求2x2+y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省广州市铁一中学高二(上)期中数学试卷(文科)(解析版) 题型:解答题

已知圆M:(x-m)2+(y-n)22及定点N(1,0),点P是圆M上的动点,点Q在NP上,点G在MP上,且满足=2=0.
(Ⅰ)若m=-1,n=0,r=4,求点G的轨迹C的方程;
(Ⅱ)若动圆M和(Ⅰ)中所求轨迹C相交于不同两点A、B,是否存在一组正实数m,n,r使得直线MN垂直平分线段AB,若存在,求出这组正实数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年河南省郑州市高考数学二模试卷(文科)(解析版) 题型:解答题

已知圆M:(x-m)2+(y-n)22及定点N(1,0),点P是圆M上的动点,点Q在NP上,点G在MP上,且满足=2=0.
(Ⅰ)若m=-1,n=0,r=4,求点G的轨迹C的方程;
(Ⅱ)若动圆M和(Ⅰ)中所求轨迹C相交于不同两点A、B,是否存在一组正实数m,n,r使得直线MN垂直平分线段AB,若存在,求出这组正实数;若不存在,说明理由.

查看答案和解析>>

同步练习册答案