分析 (Ⅰ)由已知,直线l的方程为y=$\sqrt{2}$x,圆C圆心为(0,3),半径为$\sqrt{5}$,求出圆心到直线l的距离,即可求l与圆C相交所得的弦长;
(Ⅱ)设直线l与圆C交于两点A,B,且A为OB的中点,求出A的坐标,即可求直线l的方程.
解答 解:(Ⅰ)由已知,直线l的方程为y=$\sqrt{2}$x,圆C圆心为(0,3),半径为$\sqrt{5}$,…(3分)
所以,圆心到直线l的距离为$\frac{|3|}{\sqrt{3}}$=$\sqrt{3}$.…(5分)
所以,所求弦长为2$\sqrt{5-3}$=2$\sqrt{2}$.…(6分)
(Ⅱ) 设A(x1,y1),因为A为OB的中点,则B(2x1,2y1).…(8分)
又A,B在圆C上,
所以 x12+y12-6y1+4=0,4x12+4y12-12y1+4=0.…(10分)
解得y1=1,x1=±1,…(11分)
即A(1,1)或A(-1,1).…(12分)
所以,直线l的方程为y=x或y=-x.…(13分)
点评 本题考查直线方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (¬p)∧(¬q) | B. | p∨(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2x+y+5=0 | B. | x-2y+5=0 | C. | $2x+y+5\sqrt{5}=0$ | D. | $x-2y+5\sqrt{5}=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $y={({\sqrt{x}})^2}$ | B. | $y=\sqrt{x^2}$ | C. | $y={({\root{3}{x}})^3}$ | D. | $y=\frac{x^2}{x}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com