精英家教网 > 高中数学 > 题目详情

【题目】将曲线上每个点的横坐标伸长为原来的(纵坐标不变),得到的图象,则下列说法正确的是(

A.的图象关于直线对称

B.上的值域为

C.的图象关于点对称

D.的图象可由的图象向右平移个单位长度得到

【答案】BD

【解析】

由三角恒等变换可得,再结合三角函数值域的求法、三角函数图像的对称轴、对称中心的求法逐一判断即可得解.

解:因为

所以,

对于选项A,令,解得),即函数的对称轴方程为),即选项A错误;

对于选项B,因为,所以,即,即上的值域为,即选项B正确;

对于选项C,令,解得,即的图象关于点对称,则的图象关于点对称,故选项C错误.

对于D,的图象向右平移个单位长度,得到的图象,故选项D正确.

则说法正确的是BD,

故选:BD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中.

(1),证明:当时,

(2),且,其中是自然对数的底数.

①证明恰有两个零点;

②设如为的极值点,的零点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数fx),若abc∈Rfa),fb),fc)都是某一三角形的三边长,则称fx)为可构造三角形函数.以下说法正确的是(

A.fx=1x∈R)不是可构造三角形函数

B.可构造三角形函数一定是单调函数

C.fx=可构造三角形函数

D.若定义在R上的函数fx)的值域是e为自然对数的底数),则fx)一定是可构造三角形函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若存在极小值,求实数a的取值范围;

2)若的极大值为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形是菱形,,且交于点上任意一点.

1)求证

2)已知二面角的余弦值为,若的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20141219日,2014年中国数学奥林匹克竞赛(第30届全国中学生数学冬令营)在重庆市巴蜀中学举行.参加本届中国数学奥林匹克竞赛共有来自各省、市(自治区、直辖市)、香港地区、澳门地区,以及俄罗斯、新加坡等国的30余支代表队,共317名选手.竞赛为期2天,每天3道题,限时4个半小时完成.部分优胜者将参加为国际数学奥林匹克竞赛而组建的中国国家集训队.中国数学奥林匹克竞赛(全国中学生数学冬令营)是在全国高中数学联赛基础上进行的一次较高层次的数学竞赛,该项活动也是中国中学生级别最高、规模最大、最有影响的全国性数学竞赛.2020年第29届全国中学生生物学竞赛也将在重庆巴蜀中学举行.巴蜀中学校本选修课“数学建模”兴趣小组调查了2019年参加全国生物竞赛的200名学生(其中男生、女生各100人)的成绩,得到这200名学生成绩的中位数为78.200名学生成绩均在50110之间,且成绩在内的人数为30,这200名学生成绩的高于平均数的男生有62名,女生有38.并根据调查结果画出如图所示的频率分布直方图.

1)求的值;

2)填写下表,能否有的把握认为学生成绩是否高于平均数与性别有关系?

男生

女生

总计

成绩不高于平均数

成绩高于平均数

总计

参考公式及数据:,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,且此抛物线的准线被椭圆截得的弦长为.

1)求椭圆的标准方程;

2)直线交椭圆两点,线段的中点为,直线是线段的垂直平分线,试问直线是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调递增区间;

(2)内角的对边分别为,若,且,试求角和角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值,由检测结果得到如下频率分布表和频率分布直方图.

分组

频数

频率

8

16

0.16

4

0.04

合计

100

1

1)求图中的值;

2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间内为合格品,重量在区间内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20.以抽检样本重量的频率分布作为该批零件重量的概率分布.若这批零件共400件,现有两种销售方案:

方案一:对剩余零件不再进行检测,回收处理这100件样本中的不合格品,余下所有零件均按150/件售出;

方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150/件售出,优质品按200/件售出.

仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.

查看答案和解析>>

同步练习册答案