精英家教网 > 高中数学 > 题目详情
设函数f(x)满足2f(3x)+f(2-3x)=6x+1,则f(x)=
 
考点:函数解析式的求解及常用方法
专题:计算题,函数的性质及应用
分析:由2f(3x)+f(2-3x)=6x+1可写出2f(x)+f(2-x)=2x+1,2f(2-x)+f(x)=2(2-x)+1;从而联立解得.
解答: 解:∵2f(3x)+f(2-3x)=6x+1,
∴2f(x)+f(2-x)=2x+1;
2f(2-x)+f(x)=2(2-x)+1;
∴3f(x)=2(2x+1)-[2(2-x)+1];
故f(x)=2x-1;
故答案为:2x-1.
点评:本题考查了函数解析式的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据以下给出的程序,画出其相应的程序框图,并指明该算法的功能.

查看答案和解析>>

科目:高中数学 来源: 题型:

-
π
12
弧度角在第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等于1的三个正数a、b、c成等比数列,则(2-logba)(1+logca)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直角坐标平面上,向量
a
=(-3,2λ),
b
=(-3λ,2),定点A(3,0),其中0<λ<1.一自点A发出的光线以
a
为方向向量射到y轴的B点处,并被y轴反射,其反射光线与自点A以
b
为方向向量的光线相交于点P.
(1)求点P的轨迹方程;
(2)问A、B、P、O四点能否共圆(O为坐标原点),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=2与函数f(x)=3sin(ωx+Φ)(ω>0,|Φ|<
π
2
)的图象在y轴右侧的交点依次为A,B,C,…,A,C两点在x轴上的射影是A1C1,若矩形ACC1A1的面积为4,且f(2013)=-
3
3
2
,则f(x)的单调区间
 

查看答案和解析>>

科目:高中数学 来源: 题型:

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-
1
100
(x-60)2+41(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-
99
100
(100-x)2+
294
5
(100-x)+160(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1),(2),该方案是否具有实施价值?

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}中,首项a1=1,点(an,an+1)(n=1,2,3,…)均在直线y=2x+1上
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax+1-a在(-1,1)上有零点,求a的取值范围.

查看答案和解析>>

同步练习册答案