【题目】已知四边形为正方形,平面,四边形与四边形也都为正方形,连接,点为的中点,有下述四个结论:
①; ②与所成角为;
③平面; ④与平面所成角为.
其中所有正确结论的编号是( )
A.①②B.①②③C.①③④D.①②③④
科目:高中数学 来源: 题型:
【题目】已知椭圆长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线过点,且与椭圆相交于另一点.
(1)求椭圆的方程;
(2)若线段长为,求直线的倾斜角;
(3)点在线段的垂直平分线上,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】实数a,b满足ab>0且a≠b,由a、b、、按一定顺序构成的数列( )
A. 可能是等差数列,也可能是等比数列
B. 可能是等差数列,但不可能是等比数列
C. 不可能是等差数列,但可能是等比数列
D. 不可能是等差数列,也不可能是等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在圆台中,平面过上下底面的圆心,,点M在上,N为的中点,.
(1)求证:平面平面;
(2)当时,与底面所成角的正弦值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非空集合是由一些函数组成,满足如下性质:①对任意,均存在反函数,且;②对任意,方程均有解;③对任意、,若函数为定义在上的一次函数,则.
(1)若,,均在集合中,求证:函数;
(2)若函数()在集合中,求实数的取值范围;
(3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是一个三棱锥,是圆的直径,是圆上的点,垂直圆所在的平面,,分别是棱,的中点.
(1)求证:平面;
(2)若二面角是,,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 已知抛物线的顶点为坐标原点,焦点在轴的正半轴上,过点的直线与抛物线相交于,两点,且满足
(1)求抛物线的方程;
(2)若是抛物线上的动点,点在轴上,圆内切于,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为R的函数,若函数是奇函数,则称为正弦奇函数.已知 是单调递增的正弦奇函数,其值域为R,.
(1)已知是正弦奇函数,证明:“为方程的解”的充要条件是“为方程的解”;
(2)若,求的值;
(3)证明:是奇函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.
(1)求曲线的方程;
(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com