精英家教网 > 高中数学 > 题目详情
条件:p:α=β,条件q:sinα=sinβ,那么条件p是条件q的(  )
分析:若α=β,可得sinα=sinβ,根据函数sinα=sinβ,根据三角函数的周期性,可知α与β不一定相等,再利用充分必要条件的定义进行求解;
解答:解:若α=β,可得sinα=sinβ;
若条件q:sinα=sinβ,
可得α=β+2kπ,k∈Z,
∴α与β不一定相等,
∴p⇒q,反之不一定成立
故选A;
点评:此题主要考查三角函数的性质,利用函数的周期性进行求解,是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+a=0(a>0),直线l2:-4x+2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是
7
10
5

(1)求a的值;
(2)求l3到l1的角θ;
(3)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的
1
2
;③P点到l1的距离与P点到l3的距离之比是
2
5
?若能,求P点坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

过直线y=2上一点P向单位圆作两切线,切点分别为A、B.
(I)若A、B两点所在直线与直线y=-2交于点M,若点M的横坐标的取值范围为[1,
52
]
,求P点横坐标的取值范围;
(II)在(I)的条件下,是否存在一条切线作为入射线射到直线y=-2上,其反射线也与单位圆相切?若存在,求出该切线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+a=0(a>0),l2:-4x+2y+1=0和l3:x+y-1=0,且l1与l2的距离是
7
5
10

(1)求a的值;
(2)能否找到一点P同时满足下列三个条件:
①P是第一象限的点;
②点P到l1的距离是点P到l2的距离的
1
2

③点P到l1的距离与点P到l3的距离之比是
2
5
?若能,求点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是四边形ABCD所在平面外一点,O是AC与BD的交点,且PO⊥平面ABCD.当四边形ABCD满足下列条件
①②③
①②③
时,点P到四边形四条边的距离相等.
①正方形;②圆的外切四边形;③菱形;④矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
与抛物线E:y2=4x有一个公共的焦点F,且两曲线在第一象限的交点P的横坐标为
2
3

(1)求椭圆C的方程;
(2)直线l:y=kx与抛物线E的交点为O,Q,与椭圆c的交点为M,N(N在线段OQ上),且|MO|=|NQ|. 问满足条件的直线l有几条,说明理由.

查看答案和解析>>

同步练习册答案