精英家教网 > 高中数学 > 题目详情

己知函数 .
(I)求的极大值和极小值;
(II)当时,恒成立,求的取值范围.

(I)的极大值为的极小值为.(II)的取值范围是.

解析试题分析:(I) 易知函数定义域为,在上讨论的极值先求导,列出的正负表,再根据函数的单调性和极值与倒数的关系即可求出极值.
(II) 本题是不等式恒成立求参数范围问题,一般思路是化简-分类讨论,但本题中化简后为,如果用换元后为讨论起来更简单.分别讨论?时,化简为;?时,恒成立;?时化简为三种情况,运用均值不等式求出范围即可.
试题解析:(I) 函数,知定义域为,.
所以的变化情况如下:










+
0
-
0
+
0
-

递增
极大值
递减
极小值
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知 ().
(Ⅰ)当时,判断在定义域上的单调性;
(Ⅱ)若上的最小值为,求的值;
(Ⅲ)若上恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期和最小值;
(2)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,设函数的3个极值点为,且.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)当时判断的单调性;
(2)若在其定义域为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)讨论函数的单调性;
(2)若存在,使得成立,求满足上述条件的最大整数
(3)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试求函数的单调区间和极值;
(2)若 直线与曲线相交于不同两点,若 试证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设点为函数的图象上任意一点,若曲线在点处的切线的斜率恒大于
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)记的导函数,若不等式 在上有解,求实数的取值范围;
(2)若,对任意的,不等式恒成立,求m(m∈Z,m1)的值.

查看答案和解析>>

同步练习册答案