精英家教网 > 高中数学 > 题目详情
8.已知p:x2-8x-20≤0;q:x2-2x+1-m2≤0(m>0);若¬p是¬q的充分而不必要条件,求m的取值范围.

分析 对于p:x2-8x-20≤0,解得-2≤x≤10;q:x2-2x+1-m2≤0(m>0),解得1-m≤x≤1+m(m>0).可得¬p:A={x|x>10或x<-2}.¬q:B={x|x<1-m,或x>1+m(m>0)}.根据¬p是¬q的充分而不必要条件,可得A?B.即可得出.

解答 解:对于p:x2-8x-20≤0,解得-2≤x≤10;
q:x2-2x+1-m2≤0(m>0),解得1-m≤x≤1+m(m>0).
¬p:A={x|x>10或x<-2}.
¬q:B={x|x<1-m,或x>1+m(m>0)}.
∵¬p是¬q的充分而不必要条件,∴A?B.
∴$\left\{\begin{array}{l}{m>0}\\{10≥1+m}\\{-2≤1-m}\end{array}\right.$,解得0<m≤3.
∴m的取值范围是(0,3].

点评 本题考查了不等式的解法、集合运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设x,y满足约束条件$\left\{\begin{array}{l}{x≥y}\\{y≥4x-3}\\{x≥0,y≥0}\end{array}\right.$,若目标函数$z=x+\frac{n}{2}y({n>0})$,z最大值为2,则$y=tan({nx+\frac{π}{6}})$的图象向右平移$\frac{π}{6}$后的表达式为(  )
A.$y=tan({2x+\frac{π}{6}})$B.$y=cot({x-\frac{π}{6}})$C.$y=tan({2x-\frac{π}{6}})$D.y=tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“对任意的x∈R,x2-x+1≥0”的否定是(  )
A.不存在x0∈R,x02-2x0+1≥0B.存在x0∈R,x02-2x0+1≤0
C.存在x0∈R,x02-2x0+1<0D.对任意的x∈R,x2-2x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(-x)=f(x),则称f(x)为类偶函数,则下列函数中为类偶函数的是(  )
A.f(x)=cosxB.f(x)=sinxC.f(x)=x2-2xD.f(x)=x3-2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法,若从本校学生中抽取100人,从高一和高三抽取样本数分别为a,b,且直线ax+by+8=0与以A(1,-1)为圆心的圆交于B,C两点,且∠BAC=120°,则圆C的方程为(  )
A.(x-1)2+(y+1)2=1B.(x-1)2+(y+1)2=2C.(x-1)2+(y+1)2=$\frac{18}{17}$D.(x-1)2+(y+1)2=$\frac{12}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,设S为△ABC的面积,满足S=$\frac{\sqrt{3}}{4}$(a2+b2-c2).
(1)求角C的弧度数;
(2)若c=$\sqrt{3}$,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
 $\overline{x}$ $\overrightarrow{y}$ $\overline{w}$ $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 $\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$ (xi-$\overrightarrow{x}$)(yi-$\overline{y}$) $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
 46.6 563 6.8 289.8 1.6 1469 108.8
表中${w_i}=\sqrt{x_i}$,$\overline{w}=\frac{1}{8}\sum_{i=1}^8{w_i}$.
(1)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果要求:年宣传费x为何值时,年利润最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn)其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({{u_i}-\bar u})({{v_i}-\bar v})}}}{{\sum_{i=1}^n{{{({{u_i}-\bar u})}^2}}}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a>0,函数f(x)=a2x3-3ax2+2,g(x)=-3ax+3.
(1)若a=1,求函数f(x)的图象在点x=1处的切线方程;
(2)求函数f(x)在区间[-1,1]上的极值;
(3)若?x0∈(0,$\frac{1}{2}$],使不等式f(x0)>g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}(x+1)|,x∈(-1,3)}\\{\frac{4}{x-1},x∈[3,+∞)}\end{array}\right.$则函数g(x)=f[f(x)]-1的零点个数为(  )
A.1B.3C.4D.6

查看答案和解析>>

同步练习册答案