分析 对于p:x2-8x-20≤0,解得-2≤x≤10;q:x2-2x+1-m2≤0(m>0),解得1-m≤x≤1+m(m>0).可得¬p:A={x|x>10或x<-2}.¬q:B={x|x<1-m,或x>1+m(m>0)}.根据¬p是¬q的充分而不必要条件,可得A?B.即可得出.
解答 解:对于p:x2-8x-20≤0,解得-2≤x≤10;
q:x2-2x+1-m2≤0(m>0),解得1-m≤x≤1+m(m>0).
¬p:A={x|x>10或x<-2}.
¬q:B={x|x<1-m,或x>1+m(m>0)}.
∵¬p是¬q的充分而不必要条件,∴A?B.
∴$\left\{\begin{array}{l}{m>0}\\{10≥1+m}\\{-2≤1-m}\end{array}\right.$,解得0<m≤3.
∴m的取值范围是(0,3].
点评 本题考查了不等式的解法、集合运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $y=tan({2x+\frac{π}{6}})$ | B. | $y=cot({x-\frac{π}{6}})$ | C. | $y=tan({2x-\frac{π}{6}})$ | D. | y=tan2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 不存在x0∈R,x02-2x0+1≥0 | B. | 存在x0∈R,x02-2x0+1≤0 | ||
C. | 存在x0∈R,x02-2x0+1<0 | D. | 对任意的x∈R,x2-2x+1<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=cosx | B. | f(x)=sinx | C. | f(x)=x2-2x | D. | f(x)=x3-2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (x-1)2+(y+1)2=1 | B. | (x-1)2+(y+1)2=2 | C. | (x-1)2+(y+1)2=$\frac{18}{17}$ | D. | (x-1)2+(y+1)2=$\frac{12}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
$\overline{x}$ | $\overrightarrow{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$ (xi-$\overrightarrow{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com