精英家教网 > 高中数学 > 题目详情
等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1,a99a100-1>0,
a99-1
a100-1
<0.给出下列结论:
①0<q<1;
②a99•a101-1<0;
③T100的值是Tn中最大的;
④使Tn>1成立的最大自然数n等于198.
其中正确的结论是(  )
分析:利用等比数列的性质及等比数列的通项公式判断出①正确.利用等比数列的性质及不等式的性质判断出②正确.
利用等比数列的性质判断出③错误.利用等比数列的性质判断出④正确,从而得出结论.
解答:解:∵a99a100-1>0,∴a12•q197>1,∴(a1•q982>1.
∵a1>1,∴q>0.
又∵
a99-1
a100-1
<0,∴a99>1,且a100<1.∴0<q<1,即①正确.
a99•a101=a100 2
0<a100<1
,∴0<a99•a101 <1,即 a99•a101-1<0,故②正确.

由于 T100=T99•a100,而 0<a100<1,故有 T100<T99,∴③错误.

④中T198=a1•a2…a198=(a1•a198)(a2•a197)…(a99•a100)=(a99•a100)99>1,

T199=a1•a2…a199=(a1•a199)(a2•a198)…(a99•a101)a100<1,∴④正确.
∴正确的为①②④,
故选A.
点评:本题考查的知识点是等比数列的性质:若m+n=p+q则有am•an=ap•aq.其中根据已知条件得到aa99>1,a100<1,是解答本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果一个数列的各项均为实数,且从第二项起开始,每一项的平方与它前一项的平方的差都是同一个常数,则称该数列为等方差数列,这个常数叫做这个数列的公方差.
(1)若数列{bn}是等方差数列,b1=1,b2=3,求b7
(2)是否存在一个非常数数列的等差数列或等比数列,同时也是等方差数列?若存在,求出这个数列;若不存在,说明理由.
(3)若正项数列{an}是首项为2、公方差为4的等方差数列,数列{
1
an
}
的前n项和为Tn,是否存在正整数p,q,使不等式Tn
pn+q
-1
对一切n∈N*都成立?若存在,求出p,q的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省常州中学高三最后冲刺综合练习数学试卷4(文科)(解析版) 题型:解答题

如果一个数列的各项均为实数,且从第二项起开始,每一项的平方与它前一项的平方的差都是同一个常数,则称该数列为等方差数列,这个常数叫做这个数列的公方差.
(1)若数列{bn}是等方差数列,b1=1,b2=3,求b7
(2)是否存在一个非常数数列的等差数列或等比数列,同时也是等方差数列?若存在,求出这个数列;若不存在,说明理由.
(3)若正项数列{an}是首项为2、公方差为4的等方差数列,数列的前n项和为Tn,是否存在正整数p,q,使不等式对一切n∈N*都成立?若存在,求出p,q的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案