【题目】如图,有一段河流,河的一侧是以O为圆心,半径为米的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O和点E处测得烟囱AB的仰角分别为,和.
(1)求烟囱AB的高度;
(2)如果要在CE间修一条直路,求CE的长.
科目:高中数学 来源: 题型:
【题目】某家具厂有方木料 ,五合板 ,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料 ,五合板 ,生产每个书橱需要方木料 ,五合板 ,出售一张书桌可获利润 元,出售一个书橱可获利润 元.
(1)如果只安排生产书桌,可获利润多少?
(2)如果只安排生产书橱,可获利润多少?
(3)怎祥安排生产可使所得利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对定义在区间上的函数和,如果对任意,都有成立,那么称函数在区间上可被替代,称为“替代区间”.给出以下问题:
①在区间上可被替代;
②可被替代的一个“替代区间”为;
③在区间可被替代,则;
④(),(),则存在实数(),使得在区间上被替代; 其中真命题有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线:(为参数),曲线:(为参数).
(1)设与相交于,两点,求;
(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若在定义域内存在实数满足,则称为“局部奇函数”.
为定义在上的“局部奇函数”;
方程有两个不等实根;
若“”为假命题,“”为真命题,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是数列的前n项和,满足,正项等比数列的前n项和为,且满足.
(Ⅰ) 求数列{an}和{bn}的通项公式; (Ⅱ) 记,求数列{cn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,离心率为,分别为左右焦点.
(1)求椭圆的标准方程;
(2)若上存在两个点,椭圆上有两个点满足三点共线,三点共线,且,求四边形面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com